
RD-Wi3 318 REA-EFFICIgNT VLSI COMPUTRTION(U)
CRNEGIE-MELLON UNIV 1/2.

PITTSBURGH PR DEPT OF COMPUTER SCIENCE C E LEISERSON

U CLRSS OCT 81 CMU-CS-82-108 F33615-78-C-i55i
UNCLASSIFIED F/G 9/2 N

Q6 IIW~

.220

11111 1 0111111111'U
1.25 LA. •

Jil= - 11II1I.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

p w

V"

QIU-CS-82-108

Area-Efficient VLSI Computation
6 0! "

Charles Eric Leiserson

Department of Computer Science
Carnegie-Mellon University I

9=s Pittsburgh, Pennsylvania 15213

October 1981

DEPARTMENT
of

COMPUTER SCIENCE

DTIC
TE L ELE C-r %

. . n d c : its

Carnegie-Mellon University

,,38 01 Is 015p

CMU-CS-82-108

Area-Efficient VLSI Computation S

Charles Eric Leiserson

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

October 1981

Submitted to Carnegie-Mellon University
in partialfzilfflment of the requirements
for the degree of Doctor of Philosophy.

*7

This research was sponsored in part by the Defense Advanced Rcscarch Projects Agency (1)O!))
ARPA Order No. 3597 which is monitored by the Air Force Avionics Laboratory Under Contract

.-33615-7,S- 55., by the National Science Foundation under Grant MCS 78-236-76, and by the
Office of Naval Research ,under Contract N00014-76-C-i370. The vicws anJ Conclusions contained
in this document arc thosC of the Author and should Iot he intcrpreted as representing the official
1;lici':s, citlc c.xp-cssed or implied, of the l)cfnse ,\dvanccd Reseatch Projecis Agcncy or the
I.Jnitcd State, Go~ eminent. Chails F. Leiserson is also a;upported by a Faniiie and J(4n1 lrtz
I"undition ftillovw.hip.

U i.

Por
Lc, : , .' ,

Distribution/

Contents Availability Codes

Ava"11 i.. or

/ gj i
"\ iNDisOI@ t Spe'3

Introduction 1

PART I:
Systolic Systems 3

1. What is a Systolic System? 4

1.1 Introduction 4
1.2 A Simple Systolic Priority Queue 6
1.3 Finite-State Automata 10
1.4 The Systolic Model 13

2. The Structure of Systolic Systems 19

2.1 Introduction 19
2.2 The Systolic Conversion Lemma 22
2.3 Design Implications of the Systolic Conversion Lemma 28
2.4 The Reset Theorem 32

3. A Selection of Systolic Algorithms 37

3.1 Introduction 37
3.2 Priority Queues and Search Trees 38

3.2.1 Simple Priority Queues 39
3.2.2 Variable-Length Keys 40
3.2.3 Real-l'ime Order Statistics 42
3.2.4 Search Trees 44
3.2.5 The Systolic Multiqueue 47

3.3 Counters 49
3.4 Pattern Matching and Language Recognition 52

4. Matrix Computations on Systolic Arrays 56
41Introduction 5

4.2 Matrix-Vector Computations 59
4.2.1 Matrix-Vector MUltiplication 59
4.2.2 Triangular ,inear Sstems 634.2.3 Variants of Niatrix-Vciccr Mtitiplication 65 *

L - - - -

ii AREA-EFFICIENT VLSI CDIMPUTATION

4.3 Matrix Computations 69
4.3.1 Matrix Multiplication on a Hex-Connected Systolic Array 69
4.3.2 LU-Decomposition on a Hex-Connected Systolic Array 74

* PART I1:
Area-Efficient Layouts 81 W

5. Preliminaries 82

5.1 Introduction 82
5.2 The VLSI Model for Layouts 84
5.3 Separator Theorems 86 e
5.4 A Nonlinear Recurrence 88

6. A Layout Algorithm 93
6.1 Introduction 93
6.2 Areas and Aspect Ratios 93
6.3 Area-Efficient Layout Construction 97
6.4 Corollaries of the Main Result 100
6.5 An Efficient Implementation of the Layout Algorithm 104

7. Further Layout Results 112

7.1 Introduction 112
7.2 Layouts with Collinear Vertices 113
7.3 Configurable Layouts 116
7.4 Packaging a Complete Binary Tree 118

Conclusion 121

Systolic Systems 121
Layouts 123

Acknowledgments 127
References 129

It

.6 9
" ' i ' I I

°

i " • I ' "I I "

- - l

I - 1 ' ' I - "I IF

- I

• I -1 • -

Figures and Tables

Figure 1-1: A systolic device connected to the bus of a computer system. 5
Table 1-2: Definition of the three-sorter. 7
Figure 1-3: A real-time systolic priority queue. 7
Figure 1-4: The operation of the systolic priority queue. 9
Figure 1-5: The difference between Moore machines and Mealy ma- 11

chines is where outputs are produced.
Figure 1-6: A PLA implementation of a Moore finite-state machine. 12
Figure 1-7: A PLA implementation of a Mealy finite-state machine. 13
Figure 1-8: Broadcasting can be implemented by Mealy machines. 17

Figure 2-t: The transformation of a Moore machine in the proof of the 23
Systolic Conversion Lemma.

Figure 2-2: The transformation of a Mealy machine in the proof of the 23
Systolic Conversien Lemma.

Table 2-3: Delays introduced by the Systolic Conversion Lemma. 24
Figure 2-4: A labeling for the system from Figure 1-8 that satisfies the 27

conditions of the Systolic Conversion Lemma.
Table 2-5: Comparison of timings in .S and S' (t' - 2t + I(v)). 27

Figuire 3-1: The tree-like systolic structure that performs MEMBER with 44 4V
O(lg n) response.

Figure 3-2: The linear ordering of a combined preorder, inorder, and 46
postorder tree walk.

Figure 3-3: The systolic rnultiqueue. 48
Figure 3-4: Any string ending with "ab?cd" is recognized by this NFSA. 55 V

Table 4-1: Definition of the inner-product-step processor. 58
Figure 4-2: Two geometries for the inner-product-step processor. 58
Figure 4-3: The linearly connected systolic array that performs matrix- 61

vector multiplication.

I-I

iV AREA-EFFICIENT VLSI C0 .4PUTATION

Figure 4-4: The operation of th- !.near systolic array in Figure 4-3. 62
Figure 4-5: The band (lower) ,:iangular linear system where q = 4. 64
Figure 4-6: The linearly connected systolic array for solving the trian- 65

gular linear system in Figure 4-5.
Figure 4-7: The operation of the linear systolic array in Figure 4-6. 66
Figure 4-8: The convolution of vectors a and x. 67
Figure 4-9: A 4-tap FIR filter with coefficients a1, a2, a3, and a4. 68
Figure 4-10: The discrete Fourier transform of vector x. 68
Figure 4-11: A hex-connected systolic array that computes the matrix 71

product shown in Equation (4-5).
Figure 4-12: The operation of the hex-connected systolic array in 72

Figure 4-11.
Figure 4-13: The hex-connected systolic array for pipelining the 76

LU-decomposition of the band matrix in Equation (4-6).
Figure 4-14: The operation of the hex-connected array in Figure 4-13. 77

Figure 5-1: An O(n Ign) layout of a complete binary tree. 82
Figure 5-2: The H-tree layout of a complete binary tree. 83
Figure 5-3: Two horizontal and two vertical slices are more than suffi- 86

cient to route an edge.
Table 5-4: Solutions of Recurrence (5-1). 90

Figure 6-1: A layout can be "folded" to fit into a square. 94
Figure 6-2: The relationships among rectangles in Step 2. 98
Table 6-3: Areas of graphs. 101
Figure 6-4: The X-tree on 31 = 25 - 1 vertices. 101
Figure 6-5: The cube-connected-cycles network on 24 = 3.23 vertices. 103
Table 6-6: Time devoted to the separator subroutine. 106
Figure 6-7: The representation of a layout. 107
Figure 6-8: Routing an edge by slicing. 108
'Fable 6-9: Time devoted to the management of the layout represen- Ill

tation.

Figure 7-1: The construction of a layout with collinear vertices. 113
Figure 7-2: The construction in Lemma 7-1. 114
Figure 7-3: A layout that can configure any tree. 116
Figure 7-4: An inefficient partitioning of a complete binary tree into 119 w

chips.
Figure 7-5: Only one kind of chip is needed to package a complete 119

binary tree.
Figure 7-6: A large complete binary tree built LIp from a single kind of 120

chip.

Uw

Introduction

The remarkable advance of very large scale integrated (VLSI) circuitry has

sparked research into the design of algorithms suitable for direct hardware imple-

mentation. To the computer theorist, VLSI provides attractive models of parallel

computation for three reasons. First, the number of electronic components that can

fit on a single chip is large, and beyond that has been doubling every two years. It is

currently possible to place 105 components on a single chip, and it is projected that

this number will very likely grow to 107 or even 108. These large numbers make

asymptotic analysis and other theoretical tools applicable to this engineering

discipline. Secondly, VLSI hardware expense can be related directly to the very

mathematical and geometric cost function of area. Unlike older technologies, the

components and interconnections between components are made out of the same

"stuff' in VLSI, and hence area is a uniform cost measure for both. Finally,'VLSI

provides a model of parallel computation that includes communication costs as well

as operation counts. The cost of communication is represented explicitly as the area

of a fixed-width wire between two processors, and the time for communication can

depetid on the distance between two processors. In fact, communication can

consume most of the area of an integrated circuit chip and most of the computation

time as well. A major goal, therefore, is to design algorithms which are both time-

efficient and area-efficient using complexity measures that reflect the true imple-

mentation costs.

- The two pars o f this thesis addi'ss 'htc t%\() mca;ures)1" cflicicnl'\. Irt I

I'IW 1

2 AREA-EFFICIENT VLSI COC'WUTAFION

i-:tnalyzes systolic systems [20, 21] which marry the ideas of pipelining ani tiultiproc-

essing in a single framework of design. Part II looks at the layout of their

communication paths. Although the two parts fit together, it should be understood

that the ideas in each stand alone. The results of Part I can be applied to systems

which are not systolic, and even systems which are not assembled on integrated

circuits. The layout results of Part 11 can be applied to more general communication

structures than graphs of systolic systems, and the ideas for representing layouts can

be used in other routing algorithms.

* S1

S

* w

* -S

- Sd

.SW flVflX9~~ - - -, - - -- -

-3

.3

PART I

* .3
SYSTOLIC SYSTEMS

.3

4 0

-t 3

3

1 3

CHAPTER 1

What is a Systolic System?

1.1 Introduction

The complexity of integrated-circuit chips being produced today makes it

feasible to build inexpensive, special-purpose subsystems that rapidly solve sophis-

ticated problems on behalf of a general-purpose host computer. Of the many ways

to exploit the burgeoning technology, systolic systems have especially desirable

properties from both engineering and mathematical standpoints. Systolic systems

are an attempt to capture the concepts of parallelism, pipelining. and intercon-

nection structures in a unified framework of mathematics and engineering. They

embody engineering techniques such as multiprocessing and pipelining together

with the more theoretical ideas of cellular automata and algorithms, and therefore

are an excellent subject for investigation from a combined standpoint.

The term "systolic" comes from "systole," which means "contraction," and in

physiology refers to the contraction of the heart that drives blood through the

circulator. system of the body. In a systolic system, the processors are hearts that
pmp multiple streams of data throughout the system. The regular beating of these

parallel processors maintains a constant flow of data through the network. This

"blood pressure" is the principal attribute of a systolic system. EverN processor

cK ClltllCS oi1 each clock tick. As a procc';.r pun)ips data iterns throtigh itsclf, it
-1 ,'.c . :, 1 0 A l, I)JIL-1.... 11 ' I' M

0- '11c alio l "~ll h r,.1 11 iL11 ''*11

..HAI IS A SYS] OLIC SY SI IE\, 5

computation arrive at a processor simultaneously. No waiting' :s necessary-the
K processors just compute, rh) thmically and perpetually.

The central issue in parallel systems is communication, and systolic systems

address this problem explicitly. Two processors that communicate must have a data

path between them, and free global communication is disallowed. The farthest a

datum can travel in unit time is from one processor to an adjacent processor.

Systolic systems are not general-purpose computing ermines. A systolic

computing system is a subsystem that performs its computatior a behalf of a host.

For example, Figure 1-1 illustrates how a special-purpose s h'c device might

form part of a computer system. The host need not be a cot , however. It

might be a real-time data stream, or some other electronic system.

Primary Systolic Disk TapeMemory Dev#ice

Figure 1-1: A systolic device connected to the bus of a computer system.

Many readers will see similarities between the systolic paradigm and other

computational models in the literature. For instance, Stone's algorithm for

performing the FFT on a shuffle-exchange network [37] is systolic-'although

communication with a host is not considered. Much study has centered on the

subclass of systolic systems called iterative arrays [16] (also called cellular automata

or tesselation automata), whose machines form a d-dimensional mesh. This thesis

uses the name systolic arrays for these systems, not to add to confusion, but because

they constitute the array-structured subclass of all systolic systems. The theorems of

Chapter 2 will demonstrate common attributes of all systolic systems.

This is not to say that all systolic systems are created cqual. VLSI technology
has made one thing quite clear: simple and regular machines have substantial

AREA-EFFICIENT VLSI COiMPU ATlION

dvantages over complicated machines. The results of Part II show that h'igh density

of processors is an immediate by-product of simple connections betwe-ai processors.

And technologists know that high density implies both high performance and low

overhead for support components. (Sutherland and Mead [38] have a good

discussion on the importance of having simple and regular geometries for

processors.) Because of their regular structure, extra attention will be paid to

systolic arrays and systolic trees.

The remainder of this chapter contains background and definitions and is

organized as follows. Section L2 gives an example of a real-time systolic priority

queue in order to further the reader's intuition about systolic systems. Section L3

discusses finite-state automata which are the basic component of systolic systems.

Section 1.4 gives a formal definition for systolic systems and the related semisystolic

systems.

1.2 A Simple Systolic Priority Queue

Before we begin a formal treatment of systolic systems, it is worthwhile to

consider an example. Many programming applications require the ability to insert

records into a set, -and at any time to retrieve from the set the record having the

smallest key according to some linear ordering. Any data structure that provides

such services is called a priority queue [1]. The operation INSERT(Q, a) replaces the

set Q with the set Q u {a}. The operation EXTRACTMIN(Q) returns the smallest

element a of Q and replaces Q with Q - {a}.

Priority queues are usually implemented in software, but a priority queue can

he built in hardware as a systolic array. One method uses identical processors, each

of which is ca.pable of sorting three elements. The iree-sorter has three inputs X, Y,

and Z and prduccs tlicc oitputs X'. Y', and Z' which are the miniumn, median.

Mnd nain trn of the inputs. Table 1 -2 slhws ti i rchi,:,hip betvcen inputs and

K, ;. ;1.lt 111'- 1 11 It 10 , 1 td'W d. :,. tt il: ,,,it: ,,.L ,1 1 , thA

WHA I IS A S) SIOIC SYS EM. 7

Table 1-2: Dcfinition of thc thircc-sorrcr.

Inputs Outputs

X Y Z X/ Y' Z/

x y z min(x,y,z) med(x,y,z) max(x,y,z) "

when several of these processors are interconnected, the changing output of one will

not interfere with the input to another. It is possible to view the processors as being

asynchronous-each computes its output values when all its inputs are available.

The synchronous approach adopted here is more intuitive for the results of this

thesis, however, and global clocking simplifies hardware design. The issue of

clocking will be discussed in more detail in Section L4.

Figure 1-3 shows how three-sorters are interconnected to make a systolic

priority queue. In the figure, the outputs from the top. middle, and bottom of a

processor are respectively the minimum, median, and maximum of the inputs. The

minimum from each processor is fed leftward, and the median and maximum are

fed rightward. This tends to keep smaller elements on the left and larger ones on

the right. An infinily key oo which is larger than all other keys is provided as

constant input on the right. The two inputs on the left are connected to the host

computer. Initially, all the elements in the queue have a key of oo. As elements are

inserted on the left, they move rightward displacing oo keys which are output on the 0

right. If ever the outputs on the right are not oo's, the queue overflows.

Y, Y 7 --> Y Y,' -Y Yi--- Y Y -
z 2"--- z Z"l-- ' -z Z'l--

Figure 1-3: A real-time systolic priority queue.

Several stcps of the operation of the systolic priorit\ Ltctice are illustrated in

AREA-EFFICIENT VLSI CON- i'U'I AION

'igure 1-4. The figure shows the data on the wires between processo-s. The first

column shows the communicatiou between the host and the first processor on

successive clock ticks, the second column shows the communication between the

first processor and the second procesor, and so forth. On the first clock tick, the

host inserts the item 6 into the queue by providing 6 and - oo as inputs. The first

processor sorts these two values and 'the value -5 it receives from the second S

processor, and on the second clock tick outputs - oo which is ignored by the host.

Notice that on the first clock tick only odd-numbered processors do useful

work, and on the second clock tick only even-numbered processors do useful work.

This phenomenon occurs often in the design of systolic systems, and is the inevitable

result of certain design techniques (see Chapter 2). There are several ways to

achieve full utilization, however. For instance, one can coalesce adjacent processors

so that only half the number are needed. Alternatively, if the number of processors

is odd, the outputs from the ends of the systolic array can be piped back through the

systolic array to make use of the processors which operate on the off-beat. Other

variations will be discussed in future chapters.

The host performs abstract INSERT and EXTRACTMIN operations, but the

basic operation of the systolic priority queue is somewhat different. With each clock

tick. the systolic array performs a combination of two INSERT operations and one

EXTRACTMIN. To perform an insertion of an item a on behalf of te host, the item

a and a dummy -oo key are presented as input to the leftmost processor. When the

clock ticks, the dummy -oo is returned as output, and the item a is inserted. The U

host need not be aware of the existence of the dummy -oc key. however. To

perform an ExTR,\crMIN operation on behalf of the host, two dummy cc keys are

input, and after the clock ticks, the minimum elemcnt of the queue is output and

returned to the host. The two dtmmy oo ke. s will ind thcir way rightwward in the

s\ >tolic array and evenumially will be omput on the right, much as corn gocs through

ith: 11N malid. \Vih , 1,,1 pir flF'lLk IlCks. 111C pri, ri. (1 'lcuc ik, r1,cR l'd 1) cC I1.Ic U

aioili r INSI I II F \ I11, \(_ I M IN.

WHAT IS A SYSrOIJIC SYSTEM7 9

-5 00 0 -
06 -2 •

-00 4 00

-00 0-2 00

* -5 4 00
6 00 00

-5 4 00
&TCACTM 7 / A 0 0 -2 00

00 6 00

(- -5 • -2 00
a 00 4 00

500 6 00v

* -2 4 0
7L ',er 3 3 0 • 6

-000 00 #

-00 4 * 6
* -2 00 00
* 3 • 00 00

-2 6 * 00
cc,< ;m. 00 3 00
00 4 00

* _ 2) -2 3 . 00
* 00 4 00

00 6 00

Figure 1-4: The uperation of the systolic priority queue.

*O

A EA-EF IC IENr VLSI CO MPUTATION

It may take an element a long tim! to find its place in the systolic array, but to

the host computer, an INSERT op 2iation appears to take only two clock cycles.

Since the minimum element in the queue is always at the left, an ExTRACrMIN

operation also takes constant time. The operation of the systolic array is pipelined

so that no degradation occurs even when the host executes many priority queue

requests in a row. Thus we may say that the systolic array, whose response time is

constant relative to the length of the array, exhibits real-time response to the

operations INSERT and EXTRACrMIN.

1.3 Finite-State Automata

A systolic system is a synchronous network of parallel processors. Each

processor in a systolic system is composed of a constant number of state-output

finite-state automata which are called Moore machines [31]. This type of finite-state

machine has the property that its outputs are dependent upon its state but not upon

its inputs. The output of a transition-output finite-state automaton or Mealy

machine [30], on the other hand, is a combinational function of both the state and

the input. Semisystolic systems may contain both Moore and Mealy machines. This

section explores the differences between these formulations of finite-state automata.

Figure .1-5 shows the two types of automata. Each is composed of some purely

combinational logic and some clocked state. But whereas the output of the Moore

machine is dependent only on the state of the machine, the output of the Mealy
*

machine may be dependent also on the current input.

To be matthenatically precise, a Moore machine is a quintuple (Q1, 0, 8, X),

where

* Q is a finite set of itertial states,

• I is a finite set of input symbols,

• * t isa fi llitc sct fOt(pti .wl'ed.s.

* P

WHA IS A S) $ O: .IC S') S U? 11Z

Moo re

Inputs Comb.

Logic

Pretent-State Next-State
Variables Variables

State

Outputs

Mealy

Inputs Comb. Outputs
Present-State Next-State

Variables State Variables qP

Fgure 1-5: The difference between Moore machines and Mealy machines is
where outputs are produced.

* 8, the srate transition function, is a combinational function that maps
QxItoQ,
A , the o zpwl transition function, is a combinational function that maps.

QxItoO.

In this mathematical model, lime can be regarded an independent variable which

takes on integer vakzies and is a count of the number of clock cycles or state changes.
6

The state q(t+ 1) =id output o(t+1) of a Moore machine attime t+I is uniquely

determined by irs s"ate q(t) at time t and its input i(t) at time t by

q(+ 1) = 8(q(t), i(t)), "
(1-1) --o(t+1) = X(q(i), it)).

A Mcaly machine is similarly defined as a quintuple (Q. 1, 0, S, X). where all is the

same as in Mc\jrz nichines ex cept thai the ou tpul at time t is dependent on input at

time ,. that is.

12 ARE.-EFICIENT VlSi (.IPU'A I ION

These machines can be implemented in a variety of ways, all of which are

consistent with the results of the next chapter. A general way to implement them on

an integrated circuit, however, is with a programmable logic array (PLA) which has

the advantage of a regular physical structure.1 Figure 1-6 shows a PLA implemen-

tation of a Moore machine. The inputs and outputs of the "naked" PLA are clocked

through the input and output registers on two phases of a clock. The state part of

the output is gated out of the PLA and onto the feedback wires.

AND OR

Inputs Present-State Outputs

Variables

Figure 1-6. A PLA implementation of a Moore finite-state machine. P

Compare this implementation of a Moore machine with a PLA implementation

of a Mealy machine (Figure 1-7). The state is clocked through registers, but since

A0 the input signals are allowed to propagate through to the output unconstrained, a -

change in the signal on an input wire can affect the output without an intervening

clock tick. When Mealy machines are strung together, signals ripple through the

combinational logic of several machines between clock ticks. If the signals fced back

un themselves before being stopped by a register, they can latch or oscillate. Even if

I 1c r,.ij Li k!'fcl rcd , ,lc.-d , j PS.I (2S] for .! -,,o d dc.,Lrip;to itII I'l .\'s.

%k HA I ISA S S I OI.IC S'i S IEM? 13 or

the problems associated with 1.,.dback have been precluded, the settling of combi-

national logic can make the (!uck period long in systems with rippling logic. As we

shall see in the next section, only Moore machines are allowed in systolic systems.

The exclusion of Mealy machines helps guarantee that the clock period does not

grow with system size, and makes the number of clock ticks be a measure of time

that is largely independent of system size.

AND OR

Y12

Inputs Outputs
Present-State

Variables

Figure 1-7: A PLA implementation of a Mealy finite-state machine.

1.4 The Systolic Model

Although a systolic system can be simply viewed as a set of interconnected m

Moore machines, its precise specification requires a good deal of messy notation.

Instead of pursuing a course of extreme mathematical formality at the expense of

the reader's intuition, we shall adopt a simplified notation. But first, it is necessary

to examine what a precise notation would need to specify.

The semantics of the interconnections among many, possibly different ma-

chines are complicated. A machine v produces symbols from a set 0 as output. In

the PLA implementation, this set of symbols is represented as the values of the

output register. Just as this register can be divided into groups depending upon

which machines the wires are connected to, so we break up each output symbol in

O. so that the pieces correspond to the oulput ports of v. Similarly, each input

symbol to a machine can be apportiuned among inpul pors

a qpi

14 .\.--EFFICIEN [VLSI COMP)UTATION

In a formal specification of a connection between two machines, . machines

might be vertices in a graph. and the connection an edge betwee:: them. The

particular ports spanned by the connection could be designated as labels on the S

edge. An edge with two labels specifies the physical structure well enough, but, in

addition, the semantics of the interconnection would need to be defined. We would

have to say mathematically that the set of pieces of output symbols for an output

port of one machine is a subset of the set of pieces of input symbols for the

particular input port of the machine to which it is connected, and that the piece of

input symbol from the input port is the corresponding output symbol from the other

at any given time.

Rather than keeping track of all these concerns, the simplified notation

specifies only which machines are connected. The structure of interconnections is

given by a directed graph whose vertices are machines. If an edge (v, w) is present

in the graph, this means that some output port of machine v is connected to one of

the input ports of machine w. The particular ports and the symbols communicated

between machines will be treated in an informal, but precise, manner.

The structure of a systolic system S(n) is given by a machine graph G = (V, E)

of n interconnected machines where the vertices in V represent the machines and

the directed edges in E represent interconnections between the machines., The

machines operate synchronously by means of a common clock, and time in the

system is measured as the number of clock cycles. All the machines in V are Moore

machines with the exception of one called the host which can be viewed as a Turing-

equivalent machine that provides input to and receives output from the systolic

system. To the other machines in the system, however, the host looks like just

2lc' ithnltly .pcakiny. wh:r we really neain is that S is a :la , uof nctwtrks. htit use (f this

phr~i~eih'vc tri~tl~ Ir I.d) ,icd prsI'c. [.r c iiiliiil ;ic-kn ')',dLL prcoctc ol the las h%
L 1 , i a " ,i l - -". ofii ri, . " 'Ili, t i ".o11. lit'" i,. i l- ,

1!;k -A hi 1'. h to _ , J 1 h

WHAI IS A SYSTOLIC SYSTEM7 15

another Moore machine, i.e., signals cannot ripple through it. Based on the

machine graph, the neighborhood of a machine v E V is the set of machines with

which it communicates:

Neigh(v) = {w I (v, w) E E or (w, v) E E}.

For S(n) to be systolic, it is further required that the Moore machines be small

in the following sense. There must exist constants c., c2, c3, and c4 such that for all n

and all v E V-{host},

* IQI < c1 (the number of states of a machine is bounded),

* II, :5 c2 (the number of input symbols for a machine is bounded),

SO,I < c3 (the number of output symbols for a machine is bounded),

* INeigh(v) < c4 (the number of neighbors of a machine is bounded,
i. e., the graph has bounded degree).

These "smallness" conditions help guarantee that the systolic model corres-

ponds in performance to a physical implementation. They ensure that as the size of

the systolic system grows, the amount of hardware needed to implement a given

machine in the system remains the same. If the logic in an individual machine were

to grow with system size, the time required for the logic to settle to a stable value

could depend on the size of the system. Thus the measure of time in the model-

number of clock ticks-would poorly reflect the actual time required in a real

4 implementation. With the smallness conditions, however, the amount of hardware

required for each machine remains small as system size grows. and hence the time

needed for a machine to change suite is independent of the size of the system.

The smallness conditions go a long way toward ensuring that the number of

clock cycles is a good mcasure of time in the systolic model. A problum arises,

however, when the timc rcqtired to propagate a signal hctwcL-n mIchinCs bccones

longcr than the time rt.qtired ror the lon-cst coiniiitional-h ,ic dcl:. thuotih a

r1:h1ik. I lI p;It'r t ol' thC clock inist I. h hlnt, ih .I i, p q I Ii. i

1lip

16 AREA-EFFICIENT VLSI COMPUTATION

delay between machines, which met li:- that the independence of the clock period

irom system size will not be relized for systems with long interconnections.

Fortunately, this effect is relatively unimportant for many integrated circuit technol-

ogies because propagation delay is typically much shorter than switching delay. The

degree to which the switching delay dominates propagation delay is a measure of the

success of the model. Future work will treat models which include propagation

delays.

* Systolic arrays, which have only nearest-neighbor connections, are especially

attractive for VLSI because propagation delay is insignificant. For this reason, they

form the basis of many of the algorithms in Chapter 3 and Chapter 4. Although the

interconnections in tree layouts are not nearest-neighbor, there is good reason to

believe (see Mead and Rem [291, for example) that logarithmic performance can be

realized for integrated circuit structures based on trees. Because of their robustness

with regard to propagation delay, the results of the next chapter-though applicable

to any systolic structure-are applied principally to systolic arrays and systolic trees.

The independence of clock period from the delay caused by many stages of

combinational logic is invalidated when Mealy machines are allowed in a system.

Despite the potential for rippling of signals from input to output to input to output.

it is often easier to design with Mealy logic because global communication can be P

expressed so easily. For instance, broadcasting the most common means of global

communication, can be implemented by letting a signal ripple throughout the

system until it reaches all processors.

A semisysiolic system is exactly like a systolic system except that some of the

machines may be Mealy machines. All other requirements of systolic systems apply

to semisystolic systems, but in addition, the output edges from Mealy machines may w

not form a cycle in the machine graph. This constraint precludes the problents of

unclocked state and oscillaiion which are associated %ith fc clback. No such
*r t It ir cil cI. i t i w c d.' d i i i , l t c ',illptit ctJ! ,ll' ll "Xi lt l,i a' . Jlii u iu ;a ',,'Iili,\'.holic

' 4Lill FI)U dI. C ;I 1.'li I:III!', illpuIIt 10 a it C)t ll:LI1lic callilt'I .1111,i tci ils)tpllt.

*P1

W\HAI IS S SI OI.!C S) srE.? 17

In a semisyst, lic system the outputs of a machine can be LtCd to identify it as

being Moore or Mealy. Wc shall adopt a graphical notation i.. which edges of the

machine graph that originate from Moore machines are represented by double

arrows , and edges from Mealy machines are represented by single arrows -..

When communication goes both ways between two Moore machines, a double-

headed double arrow - is used.

To illustrate this notation Figure 1-8 shows a semisystolic system in which the

Mealy machines (circles) implement a broadcast to the Moore machines (squares).

For this example, the combinational logic in the Mealy machines is simple-a wire V,

from the it-put to the outputs. Among the relationships between machines, we have

that v1 - v3 and v4 -, v3. Sometimes to indicate that a machine is Mealy or Moore

without specifying the machine to which the outputs go, we write v -. or v -.

Figure 1-8: Broadcasting can be implemented by Mealy machines.

Although the machine graph gives the computational structure for a systolic or 0

semisystolic system, it is often useful to organize groups of machines into processors.

For the broadcasting example in Figure 1-8, each Moore machine and the

corresponding Mealy machine that provides its broadcast input can be viewed as a

single processor. Thus although the machine graph for this semisystolic system is a

two-hy-n mesh, the system could also be considered as a one-by-n linearly

connected array of processors. Depending upon the logical structure of the system,

one grouping miglh he prcferrcd: ror all bt trivial systems, ho%%cvcr, scvcral

grouping are sure to exist.

L------------------------------__ __

.\REA-EFFICIENI VLSI CcOiiPU'I,'jON

Definition: An undirected, bounded-degree graph H is a p,,,.'essor
graph for a systolic or semisystolic system S with machine graph (i of n
vertices if there exists a constant c independent of n, and a processor
mapping 9 from the vertices of G (machines) to the vertices of H
(processors) such that

* if(v, w) E G, then either 8v = Ow or(Ov, Ow) E H, and
I

" if w E H, then I{ v I w = Ov}l < c.

In other words, the processor mapping 0 tells which machines compose which

processors. Two machines which are connected must either be in the same

processor or be in adjacent processors according to the machine graph. To make

sure that the size of a processor is independent of system size, at most c machines in

the machine graph may be mapped to the same processor.

When the processor mapping 0 is a bijection, each processor is composed of

exactly one machine. The processor graph If represents the symmetric closure of G,

and is called the standard processor graph for systolic system S. If H is the standard

processor graph for a systolic system S, and H is also a processor graph for another

system S!, then it follows that every processor graph for S is a processor graph

for S1.

0. p

* p"

o

CHAPTER 2

The Structure of Systolic Systems

2.1 Introduction

One problem with designing large parallel systems is the difficulty in making

every processor do exactly the right thing at the right time. This problem is

exacerbated for systolic systems because a processor can only communicate with

adjacent processors. Data must propogate through the interconnection network,

which means that machines see the same data at different times. Global control can

reduce the complexity of the design task because it is often easy to think of all

machines acting in unison. But global control potentially involves communication

over large distances and thus can be expensive in terms of system performance. It

make sense, therefore, to determine how systems specified with global communi-

cation can be implemented with local communication.

In Section 1.4, we saw an example (Figure 1-8, page 17) where broadcasting

was expressed in terms of the Mealy logic in a senisystolic system. As another

example of global computation, the host might want to retrieve information about

the machine states of all the processors. For instance, the host might want to know

,Ahctlher every proce:;sor has a zero in sonic register. Still another kind of g'obal

conpllalion is displa, cd by the propagatiot of a carry signal down the length of a

-iril plc himiry cotnter. It is \%k-l known tihla Iii''/ i.W, c, einMtC 1h1' eh , o%l -

*l 1') M

:0 AR EA-EFH- ICIENT VLSI C(. \ PU FATION

unidirectional communication, but a penalty proportional to the lngth of the

pipeline is paid in response time. Li this chapter, we show that global communi-

cation can often be removed with little expense in hardware, throughput, or

response time.

For a systolic subsystem, the principal performance metrics of response time

and throughput must be determined relative to the host. For instance, it is possible

for an individual processor in the system to see slow response from de rest of the

system, while the system nonetheless responds quickly to the host. We shall always

adopt the point of view of the host because the host is interested only in the external

behavior of the subsystem.

Throughput is a measure of how much work a system can do in unit time.

Since time in a systolic system is measured as clock-ticks, throughput will usually be

expressed as a fraction of one. The systolic system may multiplex its activity among

several independent jobs in order to increase its throughput. For example, the

priority queue from Section 1.2 can perform a priority queue operation every two

clock ticks. But since there are two equivalence classes of computation in the

system, two jobs could use the hardware on alternate time steps yielding a

throughput of one operation per unit time. For a single job, however, we say that
MW the dedicated hmroughput is half an operation per unit time.

Because of the timing problems associated with the rippling in semisystolic

systems, they are not as desirable structures as are purely systolic systems with

regard to integrated circuit implementation. But since global computations such as

broadcasting can be expressed easily with Mealy machines, this chapter provides

transformations that convert semisystolic systems into systolic systems. In this

context, the set of semisystolic systems will be a design space whereas the set of

s stolic systemns will he the mi plementation space.

If one - stcin is*con~crtcd'" to anoiher, it is Cxpcct.d thM thie SLL)Ild I)Crlorms

111C ,om " ,d III 111k. ,II U\t A * !A lc ,;l'

THE STRUCTURE OF S STOLi SYSTEMS 21

systems, the operation of the subsystem from the point of view of the host is at issue.
Two subsystems are said to have the same external behavior if, shen given the same

S

sequence of inputs, the two subsystems produce the same sequence of outr :L The
performance of the two subsystems may vary, however. Since the host can feed

outputs from a subsystem back into the subsystem, to declare that two systems have ~0

the same behavior is to make a strong statement indeed.3

The effectiveness of the transformations in this chapter can be measured by

comparing the throughput and response of the new system with that of the old.

Other pirformance parameters are readily derived. The measurements are in terms

of clock ticks, which is accurate for systolic systems, but could be a gross

underestimate for semisystolic systems. Rippling of logic might require that the

clock period be extremely long in order to guarantee that all signals settle to well-

defined values. Remembering that semisystolic systems are the design space, the

assumption that combinational rippling take zero time is conservative. A constant

factor slowdown from the conversion of a semisystolic system to a systolic system

will be a speedup for an actual implementation of sufficient size. The slowdowns

caused by applying transformations from this chapter are never more than a factor

of two. -•

The transformations considered here have the desirable property that they

leave the basic interconnection structure of the system unchanged so that a designer

can choose his interconnection scheme according to criteria outside the domain of

the model without fear of it being altered. He would be unhlappy, for example, if

his rCgular mesh structure were converted into a shuflke-exchnge graph which is

much more difficult to lay out on silicon (see Part I). On the other hand, if the

3Chaptcr 4 cOnlsidCrs Ifld(Ii con ti:itions h Iiich hj % (ite ,(triiLC tl1.t (lie il)pltI ll,, i' e lirst% to

(lIC ill lil't ' 1- C ilud,. C ll(.icttnln 'I'i tilt' I11111[. I'lolul tlh Iht. [i aIlh,.. lii' h 1 .IiIn
t' ill !s,% llwI .c' ,d

"
-
'
'.* ,, ll 1h ,' it-" l p, i t'. -.l ill ,!, Il, M 1110 1:i k,.' ,,. I , ! ll 11."'I", -,

k i. ,I I' Iit I'I t II l.l I I Cle.

- " - 1 imim

AREA-EFFICIENT VLSI C()NPUTATION

p.r,.essor graph of the original systemii had an edge (v, w), it is safe to say that adding

.ie edge (w, v) would not cause the designer intolerable anguish. Therefore, the

transformations we consider also have the property that the standard processor

graph of the original system is a processor graph for the transformed system (and

hence any processor graph for the original system is also a processor graph for the

transformed system).

The remainder of this chapter is organized as follows. Section 2.2 states and

proves the Systolic Conversion Lemma (Lemma 2-1) which forms the basis of most

of the transformations considered here. Section 2.3 gives a three-step design process

based on the Systolic Conversion Lemma, which is later used in Chapter 3 to design

many systolic systems. The last portion of this chapter, Section 2.4, proves the Reset

Theorem (Theorem 2-6), which shows how any system may be effectively initialized

to fixed values in constant time.

2.2 The Systolic Conversion Lemma

The transformation presented in this section can, when applicable, convert a.

semisystolic system into a purely systolic system with little loss of efficiency in time

or area. Although it is the major result of Part I, consequences of the Systolic

Conversion Lemma are likely to be used more often in practice. For example, the

Broadcast Corollary (Corollary 2-4) from Section 2.3 shows that broadcasting can

always be eliminated from an otherwise systolic system.

sP

* P

T1 IE SlTR UCILRE OF SYSTOL.C SYS IEMS 23

Lemma 2-1: (S. tolic Conversion Lemma.) Let S be a semisystolic
system, and suppose .-ach machine v in its machine g%,ph G can be
labeled with an integer 1(v) such that 1(host) = 0, and such that U

* if v - w, then l(w)- l(v) is - 1, 0, or + 1. and

& if v-. w, then l()-l(v) is +L

Then there exists a purely systolic system S' that has the same behavior as
S, and whose processor graph is the standard processor graph for S. The
response time (in terms of clock cycles) of S' is twice that of S, the

throughput is the same, and the dedicated throughput is halved. 2

+ A
0.

Figure 2-1: The transformation of a Moore machine in the proof of the Systolic Conversion Lemma. V

+ +l

Figure 2-2: The transformation ofa Mealy machine in the proof of the Systolic Conversion Lemma.

Proof The two types of machines in S are considered separately. On the left in

Figure 2-1 is a Moore machine v. The outputs that go to vertices of G labeled

1(v)- 1,/(v), and /(v)+ I have been separated from each other. We shall adopt the

notations it - , it =,w, and v = itw for each of these cases if machine w receives

the oUtput from v. In the new system S', this machine on the left in the figure is

con~ertcd into the machine on the right. Figure 2-2 shows a similar conversion for

the N lcIy nlachincs in S. Notice that 111 oily)L1tpiils frim the i:Ichine 1't to

AREAFI- ICIENT \ LSI t.%O''UI A'ON

machines labeled /(v)+1. We adopt the notation v -.+w if the oitput goes to

machine w. The only difference bi t~veen the old and new machines is that delays

have been introduced. A unit delay has been added to change state, and various

delays have been added depending upon the type of connection (see Table 2-3).

Although neither of the new machines is in the form shown in Figure 1-5 for

Moore machines, they are Moore machines because no outputs are dependent on

the current inputs. The machine graph is the same for S' as it is for S except that

machines are Moore machines in the new system, and hence the standard processor

graph for S is a processor graph for S'.

Table 1-3: Delays introduced by the Systolic Conversion Lemma.

Connection Old Delay New Delay

w =*v 1 2

w-bv 1 1

,0 1

In order to show that the new system S' properly emulates the old, we define

the status s,(t) of a machine v at time , in the old system S as (q(t), i,(t)), where q,

is the present stare and i,(t) is the input. These values become stable in a

semisy tolic system before a clock tick, and represent the inputs to the combina; w

tional logic upon which the next state depends. In the transformed system S', the

input status S'(i') of machine , at time t' is similarly defined to be (q'(t'), i('))

, hich also attains stability as the inputs to the combinational logic before each clock

tick.

We shall use induction (o sho{k that the status ofa machine v in S' is related to

I Il "lathlS ,Ifl h (111 k ; 11d piii n Ii ia:tliiC in S hN

Uq

THE S[RULCTU IE OF SYSTOLC SYSTEMS 25

S1(2t+1(v)) = s'(t). (2-1)

This invariant can easily be made to hold at some initial time. We now assume it V

holds for all machines at times before t' = 21 + I(v) for an arbitrary machine v, and

seek to show it holds for v at time t'. First, we shall show that the state portion of

the status of v satisfies q,(t) = q,(t), and then show -the corresponding result 0

for i"(t).

At time 2t+ (v)- 2, the state part of the output from the combinational logic

of a machine v, whether Moore or Mealy, is q,(t) = -1(ql,(t-1), i,(t - 1)) which is

given by Equations (1-1) and (1-2). Two clock ticks will bring this value through

the two delays in the state path of the transformed machine, thereby providing q,(t)

A as the state part of the input to the combinational logic at time '. Thus

q(2t+ l(v)) = q,() at time t' = 21+I(v).

It remains to be shown that the input part i,(t') of the status of v at time

= 2t+ 1() correctly corresponds to the outputs of other machines in S'. We

consider four cases depending upon the type of interconnection between the

machines in the original, semisystolic system S. In each case, we assume that (2-1)

has been established for all machines in S' for times before t' = 21+ I(v), and show

that it holds for an arbitrary machine v at time t .

w =0v In the semisystolic system S, machine w is a Moore machine. The
output of the combinational logic in machine w at time t -1 is given by

* Equation (I-1) as ow(t) = X ,(q(t - 1). ilt-1)). In S. a portion of S

this value is provided as part of the input iVt) to machine v at t. By the
inductive hypothesis, at time 2(- 1)4- 1() in the ne%% system S', the
values iV(t- 1) and q,,(t- 1) are the inputs to w. The combinational
logic which implements A is the same for both systems. and thus in the
new s\stcrn, o&t) must be the value produc,,:d as the output of the
cornhiatioai logic at time 21/-1)h /w) which equals i'-2 since
1(v) = 1(w. But in this system, tile portion of o,,(t) that ,.ocs to
n:ihinc v Must 'u \Ihruah tw dls. 1lh11, it : !Siir uI.: input to i

KIw!, 111, v J11 Wi1nt: it.

k4

AREA-EFFiCILNIr VLSI COMPI'UTAION

v - v As in the previous case, machine w is a Moore machine w' S whose
combinational logic ccmputes ow(t) at time t-1, a porin of which
forms part ofi "(t). Since 1(v) = I(w)-1, at time 2t+I(w)-2 = t - 1
the inductive hypothesis states that the machine w in S' similarly
computes o,(t. This data from w goes through one delay on its way to
v, so machine v correctly gets this data as input at time t'.

w -+ v Again a portion of the output ow(t) from a Moore machine w forms part
of iv(t) in the semisystolic system S. In S', it is computed as the output
of the combinational logic in w at time 2t+l(w)-2 = t'-3 since
1(v) = I(w)+ 1. This time the data goes through three delays, so once
again machine v gets the same input as it would at time t in the original
system S.

w -- +v In this case, machine w is a Mealy machine, which means that in the
original system S. the output ow(t) is dependent on the inputs at time t
instead of t-I as is the case with Moore machines. This value is given
by Equation (1-2) as o,(t) = X(q,(t), ' (t)). A portion of ow(t) is
provided as part of i(t). By the inductive hypothesis, the combinational
logic in machine w in the systolic system S' gets qw(t) and iw(t) as its
inputs at time 2t+l(w) which equals t'-1 since 1(v) = 1(w)+1. The
output ow(t) from the combinational logic goes through one delay, thus
providing input to v at time t'.

This case analysis completes the proof of Lemma 2-L 13

Figure 2-4 shows a labeling for the system from Figure 1-8 that satisfies the

conditions of the Systolic Conversion Lemma. Each Moore or Mealy machine has

been labeled with 1(v) so that the conditions of the Systolic Conversion Lemma are

satistied. The transformed systolic system will have a response time which is double

in terms of clock ticks. In the original semisystolic system, however, signals must

ripple the length of the system. in a single clock period. In the systolic system the

signals ripple only through a single machine. The performance of the systolic

sy'sicm is better, therefore. because the clock period of the scnisystolic system is

many times longer.

laihle 2-5 :,l t h l i!irt r l n alh1 Limi in ta(bular Ii tt n. 11C %Crlical axis is the
*I

iiHES. L ..C iL{RE OF sSSOLI "S' S II-MS 27

, j-

Figure 2-4: A labeling for the system from Figure 1-8 that
sa:isfics the conditions of the Systolic Con' ersion Lcmma.

time t' in the systolic system S', and the horizontal axis is 1(v). The entries of the

table give the value of t in the semisystolic system S that a machine v with label 1(v)

simulates in the systolic system S' at time t'. Thus, for example, at time 17 in system

S', a machine v with label 3 has status s,(7) because 17 = 2.7 + 3. In system S' the

value input to v is possibly dependent on the outputs of machines with label 2 at

times 14 and 16, machines with label 3 at time 15, and machines with label 4 at time

16.

Table 2-5: Comparison of timings in S and S' (1' = 21+I(v)).

-5 -4 -3 -2 -1 0 1 2 3 4 5

11 8 7 6 5 4 3
12 8 7 6 5 4

13 9 8 7 6 5 4

14 9 8 7 6 5.

15 10 9 8 7 6 5

16 10 9 8 7 6

17 11 10 9 8 7 6

18- 11 10 9 8 7

"IIe slate of a transformed machine goes throtigh an c,tra dclU. from the time
II ~ ~ ~ ~ I is ()iS PI (. l l l1 ilt (.,,tlmll('1ti ,11a lovbic tillli it Is , " ol -.fi i1,11Lt. 11111', thoCle ire

AREA-EFFICIENT VLSI COMiPUTATION

wo distinct portions of the state of a new machine, and two clock ticks A;. required

in the transformed system to simulate one in the old. Even thi:ugh there is

multidirectional communication in the system, the host sees only this slight timing

change. All inputs to a machine arrive at precisely the right instant.

The two stages of machine state form two equivalence classes of computation

in the new system, which leads to a halving of dedicated throughput and a doubling

of response time. By multiplexing the host's interactions between two independent

tasks, however, the throughput of S' can be made identical to that of S in terms of

clock ticks. Thus, in terms of clock cycles, the penalty for the conversion is minimal.

But since rippling is eliminated, the advantage of the systolic implementation

accrues as the system size grows.

In terms of the PLA implementations of Moore and Mealy machines given in

Figures 1-6 and 1-7, the extra delays can be implemented with additional registers.

*Since area of the combinational logic typically dwarfs the area of registers, the

overhead for this conversion is minimal. For implementations of fmite-state

automata where most of the state is static and only a few state variables are operated

on in a clock cycle, it may not be reasonable to keep two equivalence classes of

computation in the system. Instead. the static memory can be clocked every other

clock tick, and a delay added to the state output. The throughput will, of course, be

halved.

2.3 Design Implications of the Systolic Conversion Lemma

If the stated conditions of Lemma 2-1 are satisfied, a semisystolic system can

be transformed into a systolic system. From an engineering point of view, it is

important to know how to design semisystulic systems that satisfy the conditions.

Tiis section provides a three-step design procedure that produces inachine graphs

that can he Iahclcd so 1ihal ite S. stolic Coner-ion Llria c,1n1 IV applii. The

,.:ll lie celd 1,i,,.h,,I. :il',,'iihiIII V I'i h l :hIapiLr 3.

I ip --

THE S RUC"I URE OF SYSIOI.C SYS IEMS 29

The three-step design orocedure explored in this section ,.'i-ts with a systolic

system that performs some important piece of the desired ,.omputation. The

processors in this systolic system are then augmented with Moore and Mealy

machines whose interconnections follow those in the standard processor graph,

which yields an intermediate semisystolic system. Finally, the Systolic Conversion .0

Lemma is applied to the intermediate system to produce a systolic system whose

processor graph is the standard processor graph of the original system.

We now investigate how the intermediate semisystolic system can be designed
S

so that the conditions of the Systolic Conversion Lemma are satisfied. But first, we

define the form of this system more precisely.

Definition: Let S be a systolic system with machine graph G and
standard processor graph H. A semisystolic system S' with machine
graph G' and processor mapping 8 from G' to the same processor graph
H is an augmented systolic system based on S if

SG is a subgraph of G',

, U when restricted to the set of Mealy machines is one-to-one,

* if v - w - in G', then v = Ow.

The first requirement of this definition says that S' indeed augments S because the

machine graph of the new system subsumes the machine graph of the old, and the

second precludes two Mealy machines from belonging to the same processor. The

third condition says that a Mealy machine whose output goes to a Moore machine S

muist belong to the same processor as that Moore machine. A Mealy output can go

to a Mealy machine in another processor, however.

The next theorern provides a basis fbr the three-step design procedure. It

shows how the scinisvstolic svstein from the second step can be designed as an

attgmented systolic system in such a way that the third step. applicution of the

Systolic Cl>version I.umma. will :lwavs succeed. -The lUbeli np /1(0) in 'le
,.:it . JlL'' I , [11 , ',.'Il i', thel 1w hi:'l ()'/ ' ili :1 I'u. :;'.Iul-li', ''u" t,,1;ri:' !tI t' I 0t lilt'

.

4 35q AREA-EYFIC!ENT VLSi Ct)MPU'HON

Theorem 2-2: Let S be a systolic system with machine graph G, and
let G be the mapping from G 'o the standard processor graph H. Let U
be an arbitrary set of processors in H, and define h(8v) for a processor 8v -

in H to be the length of the shortest path from 8 v to any element of U.

Suppose S' is an augmented system based on S with machine graph
G' and mapping 8' from G' to H such that v - w -. only if
h (O'v) = h (8'w)- 1. Then there exists a purely systolic system S' with ".
processor graph H whose behavior is the same as the augmented system
S '. The response time of S" is twice that of S', the throughput is the
same. and the dedicated throughput is halved.

Proof. Any labeling of vertices which is given by the height of a vertex in a

breadth-first spanning forest of an undirected graph satisfies the property that the

label of two adjacent vertices differs by at most one. Label each Moore machine in

S' with 1(v) = h(8'v)-h(8'host) and each Mealy machine with

1(v) = h(O'v)-/h(#'host)-1. The label of the host is zero. Since v - w implies v

and w are either mapped to the same processor or adjacent processors in H, the first

itemized condition of the Systolic Conversion Lemma holds. In the first case 'W

v =,0 w, and in the latter either v w or v -+w. If v - w =,then because S' is

augmented, h(G'v) = h(8'w) and v --,+w. On the other hand, if v --- w -- , by

construction v -+w. All the conditions of the Systolic Conversion Lemma are

satisfied. 3

Intuitively, the Mealy edges go outward from the processors in U. A dual

result applies when all Mealy edges go inward toward U.

K U

. _ - :- :

I*HE SI kL C1 L',E OF S\ S'FOLi* aYS FEMS 31

Theorem 2-3: Le, , :e a systolic system with machine graph G, and
let 0 be the mapping f&,.i G to the standard processor graph H. Let U
be an arbitrary set of processors in H, and define h(0v) for a processor 8v
in H to be the length of the shortest path from 0 v to any processor in U.

Suppose S' is an augmented system based on S with machine graph
G' and mapping 0' from G to H such that v -- w -., only if
h(8'v) = h(8'w)+l. Then there exists a systolic system S" with
processor graph H whose behavior' is the same as the augmented system
S'. The response time of S" is twice that of S', the throughput is the
same, and the dedicated throughput is halved. V

Figure 1-8 (page 17) shows how a systolic array can be augmented with Mealy logic

that implements a broadcast from the host. The Mealy edges in the machine graph

of this system go outward from the host in a breadth-first manner, and therefore

Theorem 2-2 can be applied to remove the Mealy rippling. In fact, any systolic

system can be augmented to implement broadcasting from the host so that

Theorem 2-2 is satisfied. The Broadcast Corollary is the single most useful

consequence of the Systolic Conversion Lemma.

Corollary 2-4: (Broadcast Corollary.) Let S be a systolic system with
standard processor graph H, and suppose that S is modified so that at any
time t the host may broadcast a symbol which is provided as part of the 6

input i,(t) to each machine in S. Then there exists a systolic system S'
with processor graph H whose behavior is the same as S with broadcast.
The response time ofS' is twice that of S, the throughput is the same, and
the dedicated throughput is halved. S

ProoJ. Augment S with Mealy machines whose outputs run outwyard from the host

in a breadth-first spanning tree. The Mealy edges so constructed satisf, the

4 constraint that if I' , . then the depth of v in the spanning tree is one less than w

the'depth of w. let the set U in Theorem 2-2 contain only the host, and apply the

theorem. 0

a Corllarics can hc (hta ined l6r other gl.al collilJ p Itions. [11 1 Iir most 0

lit Ai i n ., it i", , ', :", , , WI, k 1 t I,

32 AREA-EFFiCIEN I VLSI CC\ %UUTATION

outward or inward in a breadth-first manner and then simply apply The'r .m 2-2 or

Theorem 2-3. We shall see many examples in Chapter 3.

2.4 The Reset Theorem

The final result of this chapter is a theorem about resetting the states and

outputs of machines in a semisystolic system to predefined values. The transformed

system will itself be a semisystolic system which, if the original system satisfied the

conditions of the Systolic Conversion Lemma, will itself satisfy the conditions. The p

reason for gearing this result toward semisystolic systems instead of systolic systems

is so that it can be applied independently from the Systolic Conversion Lemma and

its consequential theorems.

In order to prove the Reset Theorem, we shall need a result about semisystolic

systems which is similar to one that Cole [91 proved for multidimensional systolic

arrays.

Lemma 2-5: Let S be a semisystolic system with machine graph G.
Define h (v) to be the shortest weighted path in G from the host to v
where Moore edges have weight 1 and Mealy edges have weight 0. Then

the state of machine v at time t is independent from any of the outputs of

the host at times t + . .. , ift < to+h(v).

Proof Definitions (1-1) and (1-2) show that the state of any machine v at time t is

determined by its inputs at time t- 1. Thus the state of v at time i is only affected

by the state of a machine w at time t-1 if there exists a (possibly empty) set of

machines ur, u2. u k such that either w - ul --+ u2 -& ... -, v or

w- - u1 - u2 - .. -. v. The label h(v)of machine v must satisly h(v) < h(w)+ 1

since there is at miyst one Moore edge between the two machines. Since the host is

labled 0. any machine Mhose state is affected in one time step b. the output from

the host at time 1o can have label at most 1. in two time steps at most 2. etc. By

* il lctio il. ,lL l AM iC t (.1i1V I (o1 A :1.achini V %%itll Iabcl 0() caflhl't c aITli' lCd h%

* p

THE SI RUCIUIRE OF S SIOLI(sYSIEMS 33

the output of the host at time , unless t > to+ (v). Therefor. if t < to+ h (v), the

outputs of the host at tim:s to+1, to+2 ... t cannot affect the state of v at

time t. C3

A reset operation can be added to a semisystolic system by making minor

changes to the Mealy and Moore machines in the system. Each machine is given an

additional RESET input which affects the state and output of the machine in the

following way. If the boolean signal RESET goes high at time t, the state of a

machine v assumes a predefined value 4, at time t + 1. If v is a Moore machine, the

output also assumes a predef'med value j. at time 1 + 1. But if it is a Mealy machine,

the output assumes the value 6. at time t.

For the PLA implementation of Moore and Mealy machines, the addition of

reset !ogic to a machine can be accomplished either by making changes to the PLA

logic or through the use of a two-input multiplexor. The multiplexor takes two

inputs X and Y and a boolean control signal, and produces either X or Y depending

on the value of the control signal, that is, the output is V

(XA-RESET) v (YARESET). The state and output of a machine can thus be reset

by feeding the normal outputs from the PLA into X, the predefined values into Y,

and then letting the RESET signal control the multiplexor.

Suppose it is desired that all machines in a semisystolic system be reset on

command from the host. If the system is systolic, a global RESET signal can be

broadcast to all machines from the host. and then Corollary 2-4 applied to yield a

new systolic system which implements the broadcast. If the system is not systolic,

however, this approach will not work unless ali Mealy logic in the system goes the

same direction as the broadcast. The ne:, ."eorem shows, however, that any

semisystolic s.stem can be reset. FurthcrMore, hi, penalty necd be paid in tenns of

cluck ticks as it might be if Corollary 2-4 wcre applied.

34 AREA-EFFICIENT VLSI CC WUI'AIION

Theorem 2-6: (Reset Theorem.) Let S be a semisystolic systyl, with
machine" graph G and standard processor graph H, and suppo:, every
machine v in S has a RESET input. Then there exists another semisys-
tolic system S' with machine graph G' and processor graph H whose
behavior is the same as S with global reset. The response time,
throughput, and dedicated throughput of S' are all the same as S, and any
labeling for G based on the Systolic Conversion Lemma can be extended
to G'.

Sketch of proof Consider H as a symmetric directed graph, and assign weights

from {0, 1} to the edges of H according to the following rule.

* if v - w in G, then give (Ov, Ow) a weight of L,

Sif v -- w in G, then give (8v, 8w) a weight of 0, and

* if(v, w) (G but (w, v) E G, then give (Ov, Ow) a weight of L

Each vertex Ov of H is now labeled with h(Ov), which is defined as the minimum

weighted path from Ov to Ohost. Observe that since the edge weights are from

{0, 1}, the labels of two adjacent vertices differ by at most one.

The global reset command is implemented by including machines in S' that,

with each step of the clock, propagate a wavefront of RESET's along a breadth-first

spanning tree of H rooted at the host. Along Moore edges the wavefront is clocked

by new Moore machines. Along Mealy edges, new Mealy machines allow the

wavefront to ripple. If the spanning tree goes along a a Mealy edge in the reverse

direction, however, a new Moore machine clocks the wavefront. The idea is that in
0 the system S some of the machines cannot be afTcted by normal operation of the

host until some time after the host signals RESET. In the system S', the

corresponding machines art reset later.

0 When the wavefront reaches a machine in S', it resets the state and output of P

the inachine. Since time t + h(0 v)elapses between the time i that the [lost signals

RESET and the dine the wacfIlVt iacheS a 11aclline I. ho\..\ er, the the t.te and

0)l111 Wl, A 'IhL' 111: ii .III II(, 4 h It' I) Ni, 1*1 II cIdL ' I Il', IIIt 11. IC'..1 0

* |,

IHE SIRUCrU REI OFs STOLIC .YSTlEMS 35

the values of the state and cutput of v in the original system S at time i+h(Ov).

Lemma 2-5 guarantees that these values are well-defined btecause the weighted

graph in the lemma is a subgraph of the weighted graph considered here. Thus we

may define 4,(h (8 v)) and 6,(h (0 v)) as the state and output that machine v has in

system S at time h(Ov)) if RESET is signaled by the host at time 0, and be assured

that 4,(h (8v)) and 6,(h (Ov)) are well-defined constants which may be computed in

advance. In summary, the state and output of each machine v in S' are reset by the

wavefront to 4,(h (6v)) and 6,(h (0 v)) at time t + h (8v).

There is one more wrinkle in the construction. The wavefront partitions those

machines that have been influenced by a global reset from those that have not. We

must ensure, however, that the computations performed by a machine before it is

reset do not influence any machines that have already been reset. The problem

arises when a Moore machine v is reset at time t+8v. and its outputs go to a

machine w which is reset at time t+6w = t+Ov-1. Then the output

o(t + 8v-1) from v, which is computed before v is reset, is provided as input to w

at time t+ 0 v-one clock tick after w is reset A computation that does not reflect

the reset dirties one that does.

On the next time step after being reset, the machine w expects part of 6V(6v) as

input instead of part of o (t +6 v - 1). This problem is easily corrected with a

multiplexor that, on the time step after a reset. provides the proper inputs to w from

those Moore machines that are then being reset. No change is needed for inputs

from \'ealy machines because their outputs reflect the reset \alue immediately.

Any labeling of vertices in the original s.stuen S that satisfies the conditions of

the Systolic Conversion Lemma can be extendcd to the new system S'. New Mealy W

machines are rcqiired to propagate the global RESET along ,lrc'idy existing Mealy

edges from alrcady exmsting Mealy niachincs, but no o her nex'. \lca1lv madlines are

needed. Ncw \1)()rc maIchines are needed to propagttc the d 'ivcelomit along W

C\II2\b~c~~~ ud ac'\ nd~*kv\4CAd% c " ,k~ X

6 3E\-E,-FI(C.IENTV 1'.SI C .MjPU IA|ION

T,,c new machines do not disrupt the processor graph, and since the only new

S'kealy edges follow existing Mealy edges, a labeling for machines in S zan always be
17 extended to machines in S'. D3

!I

* rp

II

*

*

*1

CHAPTER 3

A Selection of Systolic Algorithms

3.1 Introduction

a This chapter contains applications of the tools developed in Chapter 2. The

second section expands on the systolic priority queue result of Section 1.2. Systolic

counters are the subject of Section 3.3, and pattern matching and language

recognition are the focus of Section 3.4. All of the algorithms in this chapter can be

designed without using the results of the previous chapter, but with the Systolic

Conversion Lemma, the Broadcast Corollary (Corollary 2-4), and the Reset

Theorem, the construction of these systems is greatly simplified. Each algorithm is

designed in the space of semisystolic systems in such a way that it can be converted

into an efficient systolic system.

Although de "bag of tricks" accumulated in Chapter 2 apply to arbitrary

processor graphs, the algorithms contained in this chapter are based primarily on

trees and one- or two-dimensional arrays. These giaphs have the important

propertt that they require little area when laid out in the plane-an important

4 consideration for implementation in silicon. Pail II considers the layout problem in

more detail.

Another propcrt., ol" the algoritlhms de'cvloncd in this chapter is that they all

pro idc quick response to the host. The ulilit. of a si,,. stem can oftien he
II~..'ll''l b~ l.l I , il I":~ l',. t : Cqu-,l , Ilult Xi t. W lt . ~ ~ t. L ;,i

AREA-EFFICIENT VISI COMi'UTArION

'echniques such as pipelining improve throughput at the expense of -c -i;onse time.

The advantage of the techniques developed in the previous chapter is tiat through-

put is improved without sacrificing response. Subsystems for which throughput has

been optimized without regard to response time perform well only when the

granularity of problem size is sufficiently large. The applicability of the subsystem

is thereby restricted to large numerical or signal-processing calculations which,

though interesting in their own right (see Chapter 4), are hardly the bottlenecks in

most computing environments.

Many of the subsystems developed in this chapter give real-time response to a

service request by the host, that is, only a constant number of clock ticks are

required to satisfy the request from the point of view of the host. For the example

of the priority queue of Section 1.2, the INSERT and EXTRACrMIN operations gave 0

real-time response. If all the operations of a subsystem give real-time response, we

shall call it a real-time subsystem.

3.2 Priority Queues and Search Trees

In this section we construct a systolic priority queue similar to that of

Section 1.2, but rather than designing the systolic array explicitly, we design a

semisystolic array and apply the theorems from the previous chapter. We then

extend this result to show how a binary search tree can be built in hardware which

has logarithmic time response to FIND operations and pipelined performance.

Finally, we present the systolic mu/iqueue, a device which provides real-time

priority queue operations on several queues and dynamically shares processors

among the queues. Incidental to the design of these algorithms, our "bag of tricks"

will be enlarged.

I

* I I I I I

A SELECT:IlON OF S1 STOLIC AL uORITHMS 39

3.2.1 Simple Priority Qu'ies

It is not hard to make a linearly connected systolic array with broadcasting

from the host implement a real-time priority queue. Queue items are kept sorted

left-to-right in the array. The host talks to the left end of the array where the

smallest item is kept. To insert an item a into the queue, the host broadcasts

"INSERT(a)" to all the processors. Each processor compares a with the item it

contains, those processors with larger items shift their data to the right, and the item

drops into the right place. To remove the minimum element of the queue, the host

broadcasts "EXTRACTMIN," and all processors shift their data left with the min-

imum element going to the host. Each" of these operations can be implemented

within one clock cycle. Therefore, the Broadcast Corollary converts this semisystolic

system to a systolic system whose response time is only two clock cycles. The

labeling I(v) of a processor corresponds to the left-to-right index of the processor.

This implementation of a real-time priority queue should be compared with

the one from Section 1.2. With the machinery of Chapter 2, it is easy to verify that

this implementation actually works. The one from Section 1.2 works as well, but

proving it is somewhat more difficult. Furthermore, the priority queue from this

section is more easily embellished. For example, several kinds of deletions can be

implemented. The simplest is the deletion of the smallest element greater than a

broadcast item. The processors all listen to the broadcast item, and those with larger
items shift them left.

Only slightly more involved is a priority qucue that deletes an item if it is

preseni. The problem is that the processors to the right of where the broadcast item

belongs do not know whether the item is actually in the system. This obstacle Can

be oercome by changing the Mealy machines that implement the broadcast so that

they performi a priority broadcast. In this niodification of the staiid,'rd broadcast
sclIC., W1111 s hrl 'dcast to prccssors lirlher doven tlhu line can h. al'Ikectcd by U

-0 AREA-E- F ICIENT \ 1S-I CC Mv PUTATION

nrocessors closer to the host. The idc is that each Mealy machine fror i left to right

;hecks to see whether it has the it(1AL to be deleted. If so, it deletes the item and

passes a message to the processors down the line that they should shift their data left -

toward the host. If the item in a processor is smaller, however, the deletion request

is forwarded down the fine. Finally, if the item in a processor is the first one larger

than the broadcast item, which means that the item to be deleted is not in the queue,

the processor passes a message to this effect down the line. Since the direction of all

Mealy outputs is away from the host, this augmented systolic system can be

converted into a systolic system by virtue of Theorem 2-2.

A deficiency of the delete-if-present design is that the host cannot immediately

know whether the item was actually present. In fact a simple information theoretic

A argument can show that no systolic array can give real-time response to this D.

membership query. It is possible to report this exception at some later time,

however.

Sometimes it is useful to be able to retrieve the elements that overflow when

the queue gets fulL By connecting the host to both ends of the array, the overflow

can be retrieved. The broadcast in the simple priority queue can be implemented by

Mealy machines whose outputs go from the ends of the array toward the middle.

The priority broadcast in the delete-if-present priority queue can also be made to

work from both ends.

3.2.2 Variable-Length Keys W

A common characteristic of the real-time priority queues discussed so far is

that the sort key for an item. fits inside one processor. In order for the priority

queues to be systolic, the key size must be constant, independent of the system size.

The next priority qieue we constrtict works kir %ariable-length keys which are made

imp of caarc.r nd culled words. Words are compared using standard left-to-right

*LS

A SLLEiCTION OF SYSTOL IC A GORIIIHMS 41

The priority queue is a linearly connected systolic array with priority broadcast.

Each processor contains one character of a word, and a special symbol "#" is used

to separate the words. The words are each stored with the most-significant character

closest to the host. The response time for inserting a new word into the priority

queue is linear in the length of the wordand is constant for each character. The

same is true for EXTRACTMIN-constant for each character in the minimum word.

A DELETE operation can also be implemented with similar performance charac-

teristics. Thus the priority queue gives real-time response for each character.

The EXTRACTMIN operation is straightforward to implement. The host

broadcasts a shift-left to all processors and retrieves a character of the minimum

word. The host repeats the broadcast until it receives a "#" to indicate the end of

the word.

The INSERT operation is more involved. Each processor contains an upper

register and a lower register. The items in the priority queue are kept in the upper

registers. The host broadcasts each character in the word to be inserted most- 0

significant (leftmost) character first. When the first character is broadcast, each

processor copies its upper register into its lower register and shifts it right. As each

subsequent character is broadcast, the array of lower-register values is shifted right

Within each word in the priority queue, a marker is propagated from left to right to

determine which character in the word is to be compared with the broadcast

character. •

After the first character of the word to be inserted has been broadcast, each

word in the queue can be labeled with S, M, or L depending on whether it is

smaller, the same size, or larger than the word being broadcast. With each

subsequent broadcast,. some of the words labeled 10 will be distinguished as either S

or L. Observe, however, that the processors containing the first word labeled L

which are before the marked proccs;sor cannot know that their '%ord has been

l~ ,',. I.th~l,,l O t ,:.,. .,,, \vn t , ln. ,.m T ,,:re l.;. p ,,t.'' , , Ilh :.'.', r

4. AREA-Er FICIENL VL.SI COMPUTATION

cc es the broadcast character into its upper register. If a word with an M label is

'abeled with L after a broadcast, the characters before the marked processor will

have the same prefix as the broadcast word which is also the same as the previous

flirst word labeled L When the "#" is finally broadcast to indicate the end of the

inserted word, each processor to the right of the marked processor in the first word

labeled L copies its lower register into the upper. The upper registers now represent

the priority queue with the broadcast word inserted. By eliminating the Mealy logic

which implements the priority broadcast, the system becomes systolic.

A real-time DELErE operation can also be implemented. For this operation,

the lower registers are shifted left instead of right, and the comparisons are

performed on the lower registers instead of the upper. When the broadcast is

complete, a suffix of the array of lower registers is copied into the upper registers.

3.2.3 Real-Time Order Statistics

The minimum of a dynamic set of linearly ordered elements with fixed-length U

keys is not the only order statistic which can be determined by a real-time systolic

array. In fact, any set of order statistics can be maintained. For example, a systolic

array can maintain the minimum, median, and maximum of a dynamic set whose

operations include INSERT and DELErE.

The maximum of a set is easily maintained by a real-time priority queue almost

identical to that of Section 3.2.1, except that the maximal element is kept next to the

host instead of the minimal element and the sense of comparisons is inverted. Both

maximum and minimum can be simultaneously dctermincd by using two priority

queues, one for minimum and onc for maximum, and storing each element in both.

This scheme can be modified, however, so that each clement need only be stored

Place the t\ o priol ilv qIlClCS nCXt to VAclh 0(11cr and cUII ,,idatW -r,01' Pnding

lP l ,' .,l , it L l) ; it! k:. 1),, '., r I iI. lit-_v "I\lul . c liL It ,1" i' (, ?1 1,1n.1 p f It 11 io

U -A

A SEI1.CIION OF SYSTOLIC Ai ORITHMS 43

queues occupying a side of th.' :,ew systolic array. Let n be the number of items in

each queue, and notice that i.e Ln/2J items farthest from the host in the min side

are duplicated by the Ln/2J items nearest the host in the max side, and need not be

stored in the min side. Similarly, the rn/21 items farthest from the host in the max

side are duplicated by the rn/21 items nearest the host in the min side, and also

need not be stored. Thus the systolic array can be considered to hold a "U" of items

where the base of the U is about rn/21 processors from the host.

When an item is inserted, it takes its place on one side of the queue or the S

other, and causes the other elements on that side of the queue to slide down. If

insertion of a new item should cause one side to have two more items than the other,

however, the last item on that side slides across rather than down so that balance
U.

between the sides is maintained.. Similarly, if deletion of an item would cause the

queue to go out of balance, the last item on a side goes across. Only the processor

that contains the base of the U makes the balance decision, but all processors must

have this logic because any could be the base. One simple scheme only keeps a

count of whether zero, one, or two items are currently stored in a processor.

By placing the base of the U at the front of the array instead of somewhere in

the middle, the median of the items in the queue can be determined in constant 0

time. The first processor keeps a count of the imbalance in the two halves, and if

necessary, an item is transferred from one side to the other. By using a combination

* of the two techniques, all three order statistics, minimum, median, and maximum, 0

can be simultaneously maintained. The elements in the systolic array form a W, and

thr host is connected to the processor at the top. This scheme can be generaliZed to

* keep any constant number of arbitrary order statistics in a linearly connected systolic

array. Using a collection of arrays all of which talk to the host, any number of order

statistics cal be maintained with real-time response.

* w

RL\A-E:FICIEN 1 \LSI CO'PL I\ I ION

3.2.4 Search Trees

Thus far in this chapter we have concentrated on linearly connected systolic

arrays which are among the simpler systolic structures. The systolic arrays from the

orevious sections which manipulate dynamic sets of objects do not perform one very

important operation: MEIBER. The operation MEMBER(key) determines whether

an item with key key is in the set. It is not hard to show with an information

theoretic argument that any systolic structure based on a graph whose vertex degrees

are bounded by a constant cannot give a response to this query in less than

logarithmic time. In this section, we show that logarithmic response can be achieved

with systolic search trees. The operation of these trees is pipelined to provide a

dedicated throughput of one operation for every two cycles and by multiplexing, a

throughput of one operation per cycle can be achieved.

One scheme for implementing the operations INSERT, DELETE, and MEMBER

is illustrated in Figure 3-L The processors in the systolic array are also leaves of a

systolic tree. Each processor contains one item of the dynamic set, and the items are

kept in sorted order left to right. The host talks to the root of the tree, and

broadcasts the commands to the processors along the edges of the tree. Removing

the broadcast from this semisystolic system yields a systolic system with the

performance attributes stated above.

F~iq.,r: 3-!: The~ trcc-Iike s;, olic stntcrurc that prftunn.m Mi I~~ ,l~ ith ((Iin) response.

\VlT.11 lII hKI 1i r Jct ,t., 1n In .10l (1, T110:I n hc pcifl i lk d. lhc rr,.C,.,(Airs

JPp

A ShLE(.LLON OF S1S LOL.C AL CORILHMS 45

at the leaves determine whet ier to shift right or stay fixed, and the new item drops

into place in the sorted array. For a DELETE operation, the prccessors again decide

whether to shift right or left. Unfortunately, if the element is not in the queue, the

processors making the decision as to whether to shift their contents left cannot be

aware of this eventuality. We shall return to this issue shortly.

When a MEMBER operation is performed, the processor that contains the item

propagates TRUE up the tree. The other processors propagate FALSE. Each

internal node of the tree propagates the logical OR of its sons LIp to its father. After

lgn time, the response to the MEMBER query is received by the host. In the

meantime, if the host has been able to proceed without the response from the query,

it is able to perform more operations.

The problem with deletion can be resolved using the systolic tree. Rather than

deleting an object initially, a command is broadcast to mark it for deletion. A

message stating whether the marking was successful is propagated up the tree.

When it arrives at the root, a broadcast to garbage collect the item is made. With

little -additional complexity, this broadcast can be made in parallel with the

broadcasts by the host. The systolic structure will never become too full with items

marked for deletion because at most Ig n items out of n can be so marked.

It is possible to use a complete binary tree instead of the "array-tree," and to

store the items in the internal nodes of the tree as well as the leaves. To understand

how this might be done, consider enveloping all the branches of the tree with a S

single curve as shown in Figure 3-2. Each internal node contains three items, and

the curve gives the order each of the three items is visited in a tree walk. For

example, the first item in node 2 is visited after the irst item in node 1, the second

item in node 2 is visited after the third item in node 4, and the third item in node 2 is

visited after the third item in node 5. \Vhen an item to be iMcrtIL is bIroadcast, each

node determines which wa\ to shift the elements along the lineit ordcrin- ol the

CI I'C.

*9

AREA-EFFICIENT \LSI CC\iI'UIA I ION

Figure 3-2: The linear ordering of a combined preorder, inorder, and postorder tree walk

The MEMBER operation seems to cause a problem, however, because a given

item may find itself at any level in the tree. If no precautions are taken, different

responses may collide on their way up the tree. This difficulty can be avoided by
* I"

making use of the fact that all the leaves of the tree are the same distance from the

root. Mealy logic forwards the response of each internal node to the broadcast

MEMBER operation down to the leaves of the tree. On the subsequent Ign time

"- steps, the responses propagate back up to the root in a single wavefront with no

possiblility of collision with responses from other MEMBER operations. Since the

Mealy logic goes in the same direction as the broadcast from the root, they can both

be removed to make a systolic implementation.

In either the tree or combined array-tree scheme, the MEMBER operation gives

logarithmic response. The INSERT and DELETE operations, however, give real-time

response, and thus the host could proceed without waiting if either of these

operations were performed.

A SiLnECTION OF SN STOLIC i LGORI H1IMS 47

3.2.5 The Systolic Multiqueue

Suppose a computer system includes several of the simple priority queues from

Section 3.2.1. Whatever the size of each, the capacity of one might be exceeded

while most of the other queues are empty. This section presents a device that

manages several priority queues which share a joint capacity. For any priority 6

queue Q, the systolic multiqueue can perform ExTRACTMIN(Q) and INSERT(Q, a)

with real-time response.

Figure 3-3 illustrates the organization of the systolic multiqueue. Each of the i

queues managed by this device requires a systolic-array priority queue with

overflow. The host accesses any of these short systolic arrays in the normal manner,

but it can access only one at a time. When a systolic array overflows, the overflow

element travels through a systolic switching network to a large systolic search tree

which is shared by all the queues. The item, with the queue number to which it

belongs prepended to its key, is then inserted into the systolic tree which is shared

by all the queues.

Besides the INSERT operation, the systolic search tree is able to remove the

smallest member of any queue. This variation on E.XTACTMIN is easily imple- S
mented using the search-tree ideas from Section 3.2.4. The response from this

operauon will be 2 lgn if the number of items that can be stored in the tree is n, but

another operation can be started every two cycles.4
S

Each of the systolic arrays holds (Ign + lg n)/2 items, and performs operations

on behalf of the host and on behalf of the interconnectio n t',.' rk alternately, each

operation requiring two cycles. Whenever the minimunl element is removed from
Ieone of the arrays, a retrieval request goes through the interconncction network and

into ilit s stolic scarch tree to remove the Imtilct itie hich (w)v-l'l(wed Iroim that

4-

2I

4 ") L) [I lh 'i ; .[" .) , l~ \,l, h 1 , , lfl~ ltH l ,i ri th , ii li , L~ 1 , !ftl (!,

-S ARE-AEFICIIJ-NI VLSI CLAIPU JA I ION

To Host Computer
A

" Systolic
Arrays

q S

Switching Network

Sytolic

Search
Tree

Figure 3-3: The systolic multiqueue.

queue. Items retrieved from the search tree travel back through the switching

network and are inserted into the appropriate queue. Since the host may be

performing insertions as well, their use of the systolic arrays must be multiplexed.

The round trip time from retrieval request to insertion of an item back into the

systolic array is 2(gn +lgmt).

The basic idea behind the operation of the systolic muhiqueue is that each

svs l lic ar'a. caches the smaller itemls in its queue. The hlst may alltcmpt to c .iaist

the ,\toic ;aim b\ v,. in(lm. gin-&-l.,ii)/2 Ex wI t i \Mr.'s ',hich icquire

0

A SELECIION OF S STOt IC A uORITHMS 49

2(Ign ±1gm) cycles. But thi." :i; exactly the response time reouired to satisfy the

retrieval resulting from the Jst EXTRACTMIN, and thus this iern will be inserted

into the systolic array in time to satisfy the ((lgn+lgm)/2)+lst EXTRACTMIN

request. Moreover, the interconnection network and systolic search tree are full of a

continuing stream of items which will satisfy all subsequent requests on that

particular queue. It doesn't matter whether the host accesses different queues

either. Each systolic array will always have the correct smallest item in it whenever

the host performs an EXTRACTMIN on that queue.

q The number of processors in the systolic arrays and interconnection network is

0(m lgn). If the size of the systolic search tree is doubled. only O(m) processors

need be added to the systolic arrays. Systolic arrays with fifty processors could

handle any practicable value of n.

3.3 Counters

The marker propagation used in Section 3.2.2 can be implemented by a simple

shift register with exactly one bit on at any time. By connecting one end of the shift

register to the other so that the marker cycles, a ring counter is created. Rather than

having a long connection from one end of this systolic device to the other, the

counter can be folded back on itself to form a U which can be embedded in a

linearly connected array.
If a ring counter has n stages, it counts module n. Every n cycles the marker

passes the host. It is not difficult to customize a modulo n ring com.ter so that it can

count modulo m for any m that is at most n. One way is to modify the
r[,i/2] processor to act as the base of the U. This change could be made off-line,

hut it is also possible to quickly set the modulus io any one of a cont:ant number of

ValtICs n-line b.% using the R,- ;ct Theorcim (TIore'n 2-6).

"lihe :ti ilh:r i, siv 'Il ,khich a rinu i2tloltcr tlus2 N c!,.,Cllli: ll\ t11l:11%. and thl is the

l a. l". .i j'.'. I , ,tt Hi l \ , i.. l i ti,. I .. I it f' '' , a I '. I

AREA-EFFICIENT VLSI COMlPUTATION

i:,-,.Iular counter using the binary r umber system? The answer is yes. We present

,'ie here which is based on the cany-save adder [32]. This systolic-anay device can

V reduce the sum of three binary numbers to the sum of two. Suppose at time t the

processors in the array hold three n-bit numbers x(t), y(t), and z(t). Processor i

holds the ith bit x,(t) of x, the ithe bit yi(t) of y is provided as input to Processor i

from Processor i-1, and z(t) is another input whose source will be discussed later.

Each processor computes the two-bit sum.

x,(t+1) + 2yi+1(t+1) = x,(t) + yi(t) + z,(t). (3-1)

That x(t+l)+y(t+l) equals x(t)+y(t)+z(t) can be seen by multiplying both

sides of (3-1) by 2' and summing over i. The high-order bit yi + 1(t+ 1) of the result

is forwarded to Processor i+1, and the low-order bit xi+ (t+l) remains in
* p.

Processor i. Thus the processors are ready to perform another carry-save addition in

one time step.

The systolic binary counter is essentially a carry-save adder with some

modifications. All values of z,(t) are zero except for Processor 0 which is next to the

host and has a z input of one. After each cycle, therefore, the sum

x(t+l)+y(i+l) is equal to x(t)+y(t)+l. By throwing away the carry outputof

the processor containing the high-order bit, the sum is taken mod 2". Mealy logic

running back to the host determines whether the counter is at zero. The following

theorem will be used to design this Mealy logic.

Theorem 3-1: Let S be a linearly connected systolic array with n

processors, and let L he a regular language over the sentences of some
alphabet 1. Number each processor in order so that the processor

farthest from the host is labeled 1 and the one closest to the host n, and
Suppose that Processor i provides a symbol ai from 1 as an unconnected
output. Then S can he atgmented with 'Nlaly logic %hich runs from
Processor n to the host :md detennines for the host whether the sequence

, iL. n is a scntence in L.

* P

A SELLECTION O: S\ SI OLIC A ORIIHMS 51

Proof The language L can be accepted by a finite automaton

M = (K, Y, 8, q0, F) wher. *1' is a finite, nonempty set of states, T. is the alphabet,

8 is the transition function that maps K x . to K, q0 E K is the initial state, and

F C K is the set of final states. The ith Mealy machine in the augmented system

takes as input a, from Processor i as well as a state symbol q,_1 from Processor i-1.

It performs 8 on these two values and provides q, as output to Processor i + 1.

Processor 1 has the initial state q0 as input, and the output q, from Processor n goes

to the host. By induction q. E F if and only if the sequence a, is a sentence in L. 0

Suppose each processor in the counter provides the two-bit sum x,(t)+y (t) as

an unconnected output The regular language (1*20*) + 0* describes the outputs

(high-order to low-order) when the counter is at zero modulo 2". Applying first

Theorem 3-1 and then Theorem 2-3 yields a systolic-army, modulo 2", binary

counter that tells when it is at zero.

It is relatively straightforward to make this counter run modulo m for any m

which is at most 2". The ith bit of -m is stored in Processor i, and is carry-save

added to x1(t)+y(1) to produce the unconnected output. As before, a regular

language can recognize when the outputs form zero modulo 2".

Sometimes it would be useful to be able to have the counter stop counting and 6

resume later. The systolic counter now adds one unconditionally every two clock

cycles. (Two, because a consequence of the Systolic Conversion Lemma was used to

4 construct the counter.) The host can control whether the counter counts by having

it set the z input on Processor 0 to one or zero. If it is zero, the counter will continue

to operate with each clock cycle, but will add zero. The carry-save additions will

continue, but the sum of x and y will remain the same.

5 -.mc I.lil \' L 1,\ %rO ." I i t Ci IIifl 1 nn 1' r'"

f ril ., a ,. aI ! ii i ll11 .'' i ' l .l i,~ I, IL! , c"k' , ,i .I l : , . ,I

3.' AREA-EFFICIENi VLSI Ct IMPUTATION

Our last counter is a binary ui: -down counter.6 Two counters of the kind just

,. t.scribed form the upper and lower sides of a systolic array. To count up, one is

added to the upper counter and zero to the lower. To count down, zero is added to

the upper and one to the lower. The count does not change if zero is added to both.

Mealy logic based on Theorem 3-1 tests to see whether the carry-save difference of

the numbers stored in the two sides is zero.

3.4 Pattern Matching and Language Recognition

Among the applications of systolic arrays found in the literature, the problem

of real-time language recognition has been addressed by several, notably Cole [91

and Foster and Kung [121. Cole was the first to address the real-time aspect of

language recoginition by iterative arrays of finite automata. In this section, two

results of Cole are duplicated, and a variation on the systolic pattern matcher of

Foster and Kung is presented.

The first problem due to Cole is the real-time recognition of palindromes, w

strings w such that w = wR where wR is the reverse of w. The ith character of a

palindrome, for i = 1 ... , rn/21 must be the same as the n-i+lst character.

Cole constructs a systolic array which is supplied characters from a string, and for

each character tells immediately whether the string input up to that point is a

palindrome. Whereas Cole constructs the systolic array explicitly, we are able to use

the results of Chapter 2.

The host talks to one end of the systolic array, and like the priority queue and

binary counter, the characters in the systolic array form a U. Characters enter on

one side of the U and move down. When a character goes beyond the base of the U,

it takes a permanent position on the other side so that tie number of characters on

* *uht . 1[11 h,, I. I l;f. pvid,'Illk Ik' . *ii[:, 111) d'i 11, ,Il 1i iii .ii ' 1 l,',I ,h1il I(Is

A SELEC ION OF SN . I OLIC AL uORI FHMS 53

each side is the same plus oi ,n.us one. Thus if n characters cf a string have been

input, Processor i, for i = L . rn/21, contains the ith and n - i + 1st characters of

the string. It is a simple matter to compare the two characters in each processor and

use Mealy logic which runs back to the host to answer whether the string is a

palindrome. The Reset Theorem can also be applied to make the systolic array
"S

ready for another string immediately, something which Cole's device does not do.

The other problem considered by Cole is the real-time recognition of strings of

the form ww, a language which is not context-free. A systolic array that can

recognize this set of strings is only slightly more complicated. Like the systolic array

which maintains the minimum, median, maximum of a set. each processor contains

four characters which form a W in the systolic array.

Characters are input into one end of the top of the W and come back up the

corresponding U. Then they go back down the other U and find their permanent

places on the other end of the W as in the palindrome recognizer. The two bases of

the U's are kept the same height by transferring a character from one U to the other .

every two clock cycles. The processors compare the corresponding characters of the

two U's, and Mealy logic determines whether the halves match.

The fabrication in nMOS of Foster and Kung's systolic pattern matcher 0

verified the hypothesis that systolic algorithms make for high-performance and

easily designed integrated circuits. A systolic array holds the pattern and compares

it with a string. The pattern ma.v contain a special character "?" which matches any

character of the string. As the string is input, the systolic array produces a string'of

zeroes and ones indicating where the pattern matched the string. Their pattern

matcher liis very high throughput-one string charactcr per bit comparison-but

the result bit corresponding to a given character of the file is delayed somewhat

From the time the charactcr is input. "1iis delay is proporional to the Suif of the

length o, de pattern :,aid the nutmbcr olI bits per character.

lic . S\N h i pu'iC ird i n'1 I icr1 1T ' l, , hcrc tlhc!, J 'ItI lIw h:ii ,[ci'ci n1dll ,

_ - ... IS

ARL\-EFFICIEN'VLSI CO ,-PUTA HON

)ecause we take the number of bits in a character as a constant rather t0.n as a free

ariable independent of the length of the pattern. But whereas the bo,:ian string of

outputs from Foster and Kung's pattern matcher is delayed in proportion to the

number of characters in the pattern, the pattern matcher here provides a response

after one character comparison.

The array is loaded with the pattern so that the last character of the pattern is S

nearest the host. As characters from the host are input, they shift down in the array.

Mealy logic running back to the host performs the comparisons between the

corresponding string characters and pattern characters; the wild card "?" presents no

spec,.'al difficulty. The throughput of this pattern matcher is one character

comparison per cycle, before the semisystolic system is converted to be systolic.

Using Foster and Kung's idea of pipelining the character comparisons, a throughput

of a bit comparison per cycle can be obtained with a response time proportional to

the number of bits per character.

The pattern matching problem above can be solved in terms of transition

diagrams of nondeterministic fmite-state automata. A NFSA that recognizes a

particular pattern can be built out of n + I states if the pattern has n characters (see

Figure 3-A). It contains an initial state and a state for each character in the pattern,

the last character corresponding to the final state of the NFSA. A transition arc

labeled "?" (all characters) goes from the initial state to itself. Transistion arcs

iabeled with characters in the pattern go sequentially from one state to the next.

This NFSA can be converted directly into a semisystolic array by letting the states

be one-bit processors and letting the transition arcs be wires between processors

gated on the logical AND of the state bit and a comparison of' the label 'and a

brOadcast symbol. By broadcasting from the final state, the host can see immedi-

atel) x'heihcr the string tip to this point is accepted. The Broadcast Corollar\ can be

t ,L'td to remove the Ibr OaLIcasting.
*IhK dii', t 'i , I ~t-i''I ,,t in \I- \ ni', *,ii ml,.,rI;(, Il m1.iln \, , ,I ,, ,. ,d lv\

A S'.EdC ION O" SASIOLIC ALGORITHMS 55

a~ C

Figure 3-4: Any string ending with "abcd" is recognized by this NFSA. "

Floyd and Ullman [11], but they do not attempt to make the implementation

systolic. Using the slicing technique from Part II (obtained independently) and the

McNaughton-Yamada algorithm [27] which converts a regular expression into an

NFSA, they show that any language described by a regular expression of length n

can be recognized by a linear area circuit

A constant-response systolic implementation of an NFSA can sometimes be

obtained by letting the host broadcast along a minimum spanning tree originating at

the final states, and then removing the broadcast. Sufficient conditions on the

transition diagram of an NFSA so that this will work are:

* all e -transitions must go in the same direction as the broadcast,

* the fan-in and fan-out from a state must be bounded by a constant.

Weaker requirements may suffice, and these conditions do not give any intuition as

regards which regular languages are recognizable in real-time. By implementing

fan-out as a tree, the second constraint can be eliminated if logarithmic-time

4 recognition is satisfactory. Since one cycle of a semisystolic system with n

processors can always be simulated by n cycles of a similar systolic system, one

interpretation of Floyd and Ullman's result is that a language described by a regular

4 expression of length n can be recognized by a linear area systolic system whose

response is n cycles. It remains to classify regular languages in terms of the response

time of a systolic implementation. In all likelihood, response time will interact

strongly with area.

I ,

CHAPTER 4

Matrix Computations on Systolic Arrays7

4.1 Introduction

Systolic arrays are well-suited to matrix computations. In this chapter, we

show that linearly connected systolic arrays can perform matrix-vector multipli- U

cation, solve triangular systems of linear equations, and compute convolutions,

discrete Fourier transforms, and finite impulse response filters. Two-dimensional

meshes conveniently compute matrix multiplication and the LU-decomposition of a

matrix. For these last two problems, it turns out that hexagonally mesh-connected or

hex-connected processors are more natural than the standard, orthogonally mesh-

connected processors, and that almost exactly the same systolic array can be used for

both. For all these problems, connections to the host occur only on the boundary of

the particular systolic array.

The size of each of the systolic array networks is dependent only on the band

width of the band matrix to be processed, and is indcpcndent of the length of the

band. Thus a fixed-size systolic array can pipeline band matrices with arbitrarily

long bands. The pipelininig aspect of the systolic system is most effective for band

matrices with long bands, of course, but since any matrix can be considered to be a

7 d11 ' 1 2 1 1 .

:MA I RIX CO.MPU FA I IONS ON SYSTOLIC ARRAYS 57 u

band matrix A-ith the widest-possible band, all results apply eq,,iJly well to dense

matrices.

Matrix computations allow a flexibility not seen in the results of the previous

chapter. In general, reponse time is not as important for these problems as

throughput. The host provides input and retrieves output, but rarely if ever does it

alter the data provided to a subsystem as a consequence of a particular output value.

And indeed, the various rows or columns of a matrix are usually independent, and

thus only a predetermined order of matrix input is required, but it need not be any

particular order.

The host as described in Chapter 1 placed more severe constraints on the

systolic system in that it could influence the data provided to the systolic system as a

result of an output from the system. When throughput is being optimized, however,

each connection to the systolic system can be considered independent, and data does

not reenter the system. If the system were considered to have multiple independent

hosts which could be labeled differently, the results of Chapter 2 could be used to

design systolic arrays for these problems. The flow of data for matrix computations

on systolic arrays is so straightforward, however, that using the design space of

semisystolic systems would only complicate the description of these results. For

these reasons, only the systolic implementation is presented.

Another feature of the problems considered in this chapter is the similarity of

their computations on a standard uniprocessor. Each contains somewhere a loop

that evaluates the inner product of two vectors:

FOR i +- 1 TO n DO
InnerProduct 4- InnerProduct + x~i] * yi]

The repeated multiply-and-add operation in this loop is called the inner-product

step, and it fonns the basis for a processing element which we now describe. The

inner-product-step processor has three inputs X, Y, and Z and three outputs X, Y',
1a1d Z'. Table 4-1 ktscrilks the rclalitiiiship betmwcin the inpitits nd outpuLs. As k

• 1 •1

iS A{REA-LFFICIENT \ LSI CL \IPL IA lION

T-bile 4-1: Dcfinitioli of the inner-product-step processor.

Inputs Outputs

X Y Z X1 y/ Z/

x y z x y z+xy I

the case with all systolic processors, the inner-product-step processor is a Moore

machine. Thus when several of these processors are interconnected, the changing
I

output of one will not interfere with the input to another. Figure 4-2 shows two

geometries that will be used in this chapter for the inner-product-step processor. In

type (a) geometry, which will be used in Section 4.2 for matrix-vector computations,

the Y and Z connections go horizontally in opposite directions, whereas the X

connections are vertical. Type (b) geometry, which will be used in Section 4.3, has

the X and Y connections going down to the right and left., respectively, and the Z

connection going up.

(a) (b) -

XI . z

Figure 4-1 Two geometries for thc inner-product-step processor.

1,1A [MX COMPL''\ I IONS ON ;YSTOLIC ARRAYS 59

4.2 Matrix-Vector Computations

In this section, we show how matrix-vectorcomputations can be performed in

a pipelined fashion on linearly connected systolic arrays. Multiplication of a vector

by a matrix is the topic of Section 4.2.1. The systolic array which performs this

computation is the basis of the other algorithms in this section. For example,

triangular linear systems of equations can be solved with a similar systolic array (s -e

Section 4.2.2). Several applications of the matrix-vector multiplication are given in

Section 4.2.3.

4.2.1 Matrix-Vector Multiplication

We first consider the problem of multiplying a matrix A = (a,) with a vector

x = (x1 ... x)T. The elements in the product y = (,)T can be computed

by the following recurrences.

0U

(k +1) (k)
1; =Y a 1kxk' (4-1)

(= Yn + 1).

Let A be an n-by-n band matrix with band width w = p + q-1 and let x be a

vector of length n. The following equation shows an instance of thc problem when

p =2andq =3.

AREA-EFFICIENT VLSI CC .I PUTA IION

P

a,, air XY

q a37 17 an 0 Y 2

29 a a12 a3 X3 YS

ay U* a. s, 's X, Y (4-2)

A x y

The matrix-vector product can be computed by pipelining the elements of x and y

through a systolic array which consists of w linearly connected inner-product-step

processom The systolic array that solves the instance of the band matrix-vector

multiplication problem in Equation (4-2) has four inner-product-step processors

and is illustrated in Figure 4-3.

The overall scheme of the computation can be viewed as follows. The Yi,

which are initially zero, are move to the left while the x, are move to the right and

the a, go down. (For the general problem of computing Ax+d where

d = (d1 dn) T, each ',, should be initialized as d,.) Each Y, accumulates all its

terms, namely ai.i_ 2 Xi_ 2, U-i _ 1X i], ai1x,, and ai.i+1 xi+1 , before it leaves the

network. Figure 4-4 illustrates the first seven steps in the operation of the systolic

array. Although half the processors in the systolic array are idle at any given time, it

is easN to coalesce adjacent processors so that only w/2 processois are used for a

general band niatrx with band width i. Alternativel, if the number of processors

is odd. the otputis fioni the ends of the -.\stolic arra. cm be piped bacl, through the

I

.MA. RI .\ CO.\PL l.\ 1 IONS ON YS IOLIC ARRAYS 61

a43

a33 a42

aa2, a4z

a22 all

aZ 12 az

X22 X I

Fiur 4-:Telnal onceIssoi rahtprom

I II

I -.I

ay a, y I
- I

matrix-vector multiplication.

systolic array to make use of the processors which operate on the off-beat. There are

many other variations based on arranging the matrix and vector elements in a

different order.
If the bandwidth of A is w=p+q- 1, after w clock ticks the components of

the product y = Ax exit from the left-end processor at the rate of one every two

units of time. Therefore, the systolic network computes all the n components of y, in

2n + w time units, as compared to the O(ivn) time needed for the straightforw'ard

sequential algorithm on a uniprocessor computer.

The number of processors required by this systolic algorithm can sometimes be

reduced if more is known about the structure of the matrix. For example, the

matrices arising from a set of finite differences or finite elements approximations to

differential equations are usually sparse band matrices which have nonzero entries

in oni) a few diagonals of the mnatrix. In this case some of the processors in tile
f sy-stolic arra.N will always receive z.ero vales for the a .B\ intri)ducing prq.ler

4 4°

i" II | J IllY I < , , -

(2 AREA-EFI- ICIENI VLSI C, IPUTA I]ON

..

0

A4- 4-

M 4- t y

Yi Y2

w c. e. Iar 2 i

XI x,

Figure 4-4: The operation of the linear systolic array in Figure 4-3.

delays between those Processors that receive nonzero input, the number of proc-

* essors required by the systolic array can be reduced to the number of diagonals

which contain nonzero entries. This variant is useful for performing iterative

methods involving sparse band matrices.

The systolic array for matrix-vector multiplication also works for dense n-by-n

mauices because these are simply hand matrices with the maximum possible band

\%idth. The advantage of dcfining the algorithms for band matrices is that the

* hrni dwarc rcII:VcIlUclLS arc proportlolai to the \idtl of the h:tnd. Futrthcrinore, if •

m - A

4 MA RIX COMPLI A lIONS ON S i ,OLIC ARRAYS 63 97

the band width of a matrix is sc large that it requires more prccessors than a given

array provides, the matrix c . be decomposed into submatrices whose sizes match

the size of the hardware.

4.2.2 Triangular Linear Systems

The systolic array described above computes the matrix-vector product Ax.

The inverse problem is to solve for the vector x in the system of linear equations

.Ax = b. This problem is often solved by using Gaussian elimination to factor the

matrix A into a lower triangular matrix L and an upper triangular matrix U, a

technique called LU-decomposition. (We shall see in Section 4.3.2 that a two-

dimensional systolic array can quickly compute the LU-decomposition.) After the

factorization the triangular linear systems Ly = b and Ux = y must be solved.

This task is well-suited to linearly connected systolic arrays.

Let 4 = (a1i) be a nonsingular n-by-n lower8 triangular band matrix, and let

b = (b1, b,)T be given. The problem is to determine x = (x1 ... , xn) such

that Ax = b. The following recurrences show how the vector x is computed by a

technique known as forvard substitution:

yil) + 0,

y k)+ axkxk (4-3)
,(b. - ,

Suppose that A is a band matrix with band width iv = q. (See Figure 4--5 for

the case when q = 4.) Then a systolic arra. similar to the one used tbr band n-,atrix-

vecrtr multiplication can be used to solve the forward sulb:titUtion recurrences. w

(Observe the similarity of the defining recurrences (4-1) and (4-3) for these two

w

6i AREA-EFFICIEN" vLSI CO).MPLTATION

p: ':les.) For the instance of this problem in Figure 4-5, the systolic array is

!,on in Figure 4-6.
(" -- l, x, b, e

a

ag 1, a no X

Th e lnt of yl -ente the sytoi arabszr adgetar hlh

q x a, a as 0 c is
0*

4A x b

Figure 4-5: The band (lower) triangular linear system where q = 4.

The elements of y enter the systolic array as zero and go leftward while the

elements of x, a, and b move as indicated in the figure. The processor represented

as a circle is not an inner-product-step processor. It performs the operation

x. - (b-y)/a1 . Each yi accumulates inner-product terms as it moves through the

network, one term per processor. By the time y, reaches the division processor it has

the value ailx+a2x2+ ... +atjlXil , and consequently, the xi ot.tput by this

processor will have the correct value (bi - i)/a 1 . Figure 4-7 gives "snapshots" of

the first seven steps in the operation of the systolic array. From the figure one can

ch'eck that the final values of x1, x2, x3, and x4 are all correct.

With this systolic array an n-by-n band triangular linear system with band

width iv = q can be solved in 2u1 + q steps. As we have observed before, the

number of processors required by the array can be reduced to w/2 or the output can

be piped back through the array to achieve 100% utilization.* -S

* S

.I,- RIX CO%1'PL 1- IONS ON SI SlOLIC ARRAYS 65

a43 as, I

a3 a a4 a

i a,, afi

AA

- I"
I ,I I

I 1 - II

I I

I I
-

.. .- >x 2 xl

t6

*6

Figure 4-6: The linearly connected systolic array for solving
the triangular linear system in Figure 4-5.

4.2.3 Variants of Matrix-Vector Multiplication

There are many important problems which can be formulated as matrix-vector

multiplication problems and thus can be solved rapidly by the systolic array of

Section 4.2.1. The problems of computing convolutions, finite impulse response

(FIR) filters, and the discrete Fourier transform (DF) are such examples.

If a matrix has the property that the entries on any diagonal parallel to the

main diagonal are all the same, then the matrix is a Toeplit: mairix. The convolution w

proihlm is sinipl\ the mlilrt-vcd ir illi plic i io ',l hcic ile '-1rix is a Iril-ilir

k.6 AREAEFFICIENT VLSI CoQ.WLIAT\ION

0 -4 : :

a, Yi .

2n

Y3Y

4~~y anx -a

a33 Y4

Y 3443 3 y3

4

6 -*x 2
5 2

-*

7 4 b4x a53 -. X2

Figure 41-7: The o.pcrain of hc linar sysolic rry in Figtirc 4-6.

I.\ I RIX COIPL A I 10\S ON S'. SIOLIC ARRAYS 67

Toeplitz matrix (see Figure 4-8). A p-tap FIR filter can be viewed as a matrix-

\ector multiplication where the matrix is an upper triangular Toeplitz matrix with

band width w = p. Figure 4-9 represents the computation of a 4-tap filter. An

n-point discrete Fourier transform is the matrix-vector multiplication in which the

(i, j)th entry of the matrix is (i1Xi-1), where w is a primitive nth root of unity.

(See Figure 4-10).

a, aX bi

aT a a X2 b2

a, a. a, ax i b,

IS

Using a linearly connected systolic array of n processors, both the convolution

mS

of two vectors of length n and the n-point discrete Fourier transform can be

computed in 0(n) units of time, rather than O(,i lgn) as required by the sequential

FFT algorithm. Observe that for the convolution and filter problems, each
processor has to receive an entry of the matrix only once. This entry can be shippedI

Usin th processrlyrug oina connect ionsystlid ar ay i th processor drin theltn

rest of the computation thus obviating the need for external vertical connections.

Sr.\E.\-"I- ICIE. V \SI Co)IPL rA HON

a, a, a, a e l! Y
0 yl

at a t a 3 a* XY s -

A2 y

Figure 4-9- A 4-Eap FIR filter with coefficients 7,, a2, a3, and a4. -

L. Ca Cd2 C 3 ca1bl

&0 a ' s 1a bill

IP

Figure 4- 10: Thc discrcte Fouricr transfor of"ctor x.

, - 4 ' i

ip

* p

MIATRIX COMPL',A.IONS ON SYSTOLIC ARRAYS 69

4.3 Matrix Computations

Whereas the algorithms of the previous section were based on linearly

connected systolic arrays, we now consider algorithms for two-dimensional systolic

arrays. In Section 4.3.1 we show how two matrices can be multiplied on a

hexagonally connected mesh of processors. Remarkably, this same systolic array

with only minor modifications (Section 4.3.2) can be used to compute the

LU-decomposition of a matrix. The building block of these systems is, as it was for

the algorithms of Section 4.2, the inner-product-step processor. For these problems,

however, the type (b) geometry for this processor shown in Figure 4-2 is appro-

priate.

4.3.1 Matrix Multiplication on a Hex-Connected Systolic Array

This section considers tie problem of multiplying two n-by-n matrices. The

matrix product C = (c,) of A = (a,,) and B = (bj) can be computed by the

following recurrences:

0¢(1) = Ok

cci i, + akbkj , (4-4)

Ca! = c + 1)

Let A and B be n-by-n band matrices with band widths w4 and w,, These

recurrences can be evaluated by pipelining the clements of, , B. arid C through a

systolic array which consists of w tv, hex-connected inner-product-step processors.

A systolic array thai computes the matrix product

;9 AREA-EFI-ICIENT VLSI CO\I''JUIA ION

all am 0 b0 e0

all an a b, b, b, bw ell c en CM

a,, am ao 2. b, b, b, b, e em, a e. cm (4-5)

0 0 0 .

A B C

is shown in Figure 4-11. The elements in the bands of A, B, and C move through

the systolic network in three different directions. Each cii is initialized to zero as it

enters the network through the bottom boundaries. (For the more general problem

of computing AB+D where D = (d,,) is another band matrix, each c,, should be
A initialized as d..) Each c is able to accumulate all its terms before it leaves the

network through the upper boundaries. Figure 4-12 shows four steps in the

operation of this hexagonally connected systolic array. The data flow of this systolic

array can be studied more closely by making tranparencies of the band matrices

shown in the figures, and moving them over the network picture as described.

The multiplication of two n-by-n band matrices A and B whose band widths

are vA and w. can be performed in only 3n+min(A, w.) time on WA, hex- 6

connected processors. In any row or column of the network, only one out of every

three processors is active at any given time. Therefore, it is possible to use about

4 WA wB/3 processors by coalescing adjacent processors.

Another way of making use of the processors on tie off-beats is to multiplex

the systolic array as was mentioned in Section 2.2. Having several problem instances

to solve at one time is a situation that arises when a large problem instance can be

broken down into smaller instances which fit the size of the hardware. Matrix

multiplication can be decomposed by using the distributive law to express each of

the large n-by-n matrices as the sum of smniller bamd matrices which fit on the

A

AA A, A A

I
I

a I 9 a" bi b1-l

-I Iy CU 1 I-

I

a,, a,2 a1 1 CIO

S hur 4-1- c-oncc %soi raIU-lcnplISICM~i rd~

shS in-taiot(-)

S -

2 AREA%-EFFiciE.NT LS CO\IP~UA.NTON

t v

C22 C2

0 00

0I

* 0

0 p

I RIX CO'L Iru IONS ON 3' S'IOLIC ARRAYS 73

tU

a34 bS

C 4 3 2

0A

0 t

a. b2
+S

IW

a., b3 a . b4

74 .ARFA-EFFICILN F VLSI CONIPUIA I ION 2

iard\kare. This dccmposition also points up an advantage of the systol;L system for

matrix multiplication proposcd here. If the host computer system can sIock transfer

the elements of the matrices to the systolic device, problem instances of size n wAwB

can be handled by a systolic array of wAWS processors without interrupting the host.

A hardware design i hich required all data to be loaded into the device, on the other

hand, could only cope with problems of size iiyva before interrupting the host. 0

4.3.2 LU-Decomposition on a Hex-Connected Systolic Array

The problem of factoring a matrix A into lower and upper triangular matrices

L and U is called LU-decomposition. The following equation shows the factorization

when A is a band matrix with p =4 and q =4.

I=a 1 =* a0 1 Oi Ow U Oe 0

1 n nQa 61 0 U0UTSU10U19

an, am an a an 1nUse O

,. (4-6)

o 0

A L U

Once the L and U factors are known, it is relatively easy to invert A or solve the

linear system Ax = b. (We dealt with the latter problem in Section 4.2.2.) This

4 section describes a hex-connected systolic array for computing LU-decompositions. 0

The systolic algorithm proposed here assumes that the LU-decomposition can

be performed without pivoting, which is true, for example, when A is a symmetric

positive-definite, or an irreducible, diagonally domiuant matrix. The triangular

matrices L = (l.) and U = (u .) can then be evaluated according to the following
rcrnI

recurrences:

MAI RIX COMPLUA IONS 0' SYSTOLIC ARRAYS 75

(1) a U

a (k+ 1) -a(k) + I -

0 if <k,

'1k = 1 if i = k,

a¢kIU if i > k,

0 ifk>i,
ukj a(k) ifk <j.

The evaluation of these recurrences can be pipelined on a systolic array of hex-

connected processors. A global view of this pipelined computation is shown in

Figure 4-13 for the LU-decomposition problem from Equation (4-6). The systolic

array in Figure 4-13 is constructed as follows. All processors except for those on

the upper boundaries are inner-product-step processors which form exactly the

matrix multiplication network presented in Section 4.3.1. Of the processors on the

upper boundary, the one denoted by a circle is a division processor like the one

from Section 4.2.2. It forwards its input upward unchanged, but also computes the

reciprocal and outputs this down to the left. The other processors on the upper

boundaries are again inner-product-step processors, but their orientation is

changed: the ones on the upper left boundary are rotated 120 degrees clockwise;

the ones on the upper right boundary are rotated 120 degrees counterclockwise.

4 The flow of data on the systolic array is indicated by arrows in the figure. As in 0

the hexagonal systolic array for matrix multiplication, each processor operates on

real data only once every three clock ticks. Figure 4-14 illustrates four steps in the

operation of the systolic array. Notice that since A is a band matrix 1ith p = 4 and 9

q 4. when a5, titers the network, for example, it can be viewed as 5t2)• In genral
liwthi nt'~rk '43~ = a; 3 and J(A) = a~ 3 where 1 < A' < ," and />2fIo, this n.'t%%ork. ,,i+3., a.+3. i a l ,.:, ,-3 = a . +31 d

ln . ic are ,,c'Cral ct'lil ent : lic irra\ s that rc Ilcct l11 llii da1. c to

,,,

AREA-EFFICIENI \"I.SI CC\ILI'A HON

L U

4 i A A A A A

I I o

o o\

aa,

a, a n a,
I \/'
I \/I

I /

a. a32 an a14

I I

I I

a a33 aaa,2

I .
I

Figu/re 4-13: '11ie hex-connced systolic array for pil'ining d ic W-decomposition

of" the band matrix in Iquation (4-6).

iF Iif I| f I I !I

%I,%li'IX C(DIP' I A IONS ON S .. -~OIC ARRAYS 77

o .1

tt

13 t

K t

t
o o

o~r 0-4 Ii ic~ino h cvunce rd nI2~c4 3

7S AREA-EI-FICIEN VLSI COMPLIA YION

4 04

0 0 t

0 00

t

* 0

0 U.

0 (3 3a 3

433

MATRIX CONIPUT,\ IONS ON ' YSIOLIC ARRAX'S 79

retrieved as output in a number of different ways. Also, tie -I input to the

network can be changed to a + 1 if the special processor at th,: top of the network

computes minus the reciprocal of its input. The techniques used in previous

sections to augment the processor utilization can of course be used.

If A is an n-by-n band matrix with band width w = p + q -1, a systolic array

having no more than pq hex-connected processors can compute the

LU-decomposition of A in time 3n +min(p, q). If 4 is an n-by-n dense matrix,

then n2 hex-connected processors can compute the L and U matrices in 4n clock

qticks. It is not to be forgotten that these complexities include I/O, control, and data

movemenL

Since the matrix multiplication systolic array forms the largest part of the

LU-decomposition systolic array, both algorithms could easily be embodied in the

same physical device. Recall also that the systolic array that multiplied matrices

with vectors (Section 4.2.1) and the systolic array that solved triangular linear

systems (Section 4.2.2) could easily be built as the same device. This is due to the

similarity of the defining recurrences and the fact that the problems are in a sense

inverses.

4 L

PART 11

4 AREA-EFFICIENT LAYOUTS

.2

CHAPTER 5

Preliminaries

5.1 Introduction p

The systolic algorithms investigated in Part I were based primarily on array and

tree interconnection schemes. That arrays can be embedded in the plane using little

area should come as no surprise. But how much area does a tree require? The next

few chapters will examine the problem in an abstract setting: "Given a graph,

produce an area-efficient layout."

.

Figure 5-1: An O(n Ign) layout of a complcte binary tree.

To illustrate the subtleties inherent in this problem, consider the problem of

laying out a complete binary tree of n = 2 k 1 vertices. Figure 5-1 shows an

obvious solution that requires O(n lgn) area-O(n) across the bottom times O(Ign)

height. Observe that as we ascend the tree from the leaves to the root, the number

of wires is halved from one level to the next, but the length of the wires doubles.

This means that the amount of wire devoted to each level of the tree is the same.

The recurrence that describes the area requircd by this layout is A(n) = I for

n =1. and

i o 82

PRLIMINjARIES 83

A(n) - 2A([n/2J) + n/2

for n 2k - 1 where k > 1.

O

CP 0 0

Figure 5-2: The H-tree layout of a complete binary tree.

There is a more efficient solution to this embedding problem. The so-called

H-tree layout [291 shown in Figure 5-2 requires only O(n) area in spite of the fact

that relatively long wires are used towards the root of the tree. In this layout the

number of wires is halved from level to level as we ascend to the root, but the length @

of the wires doubles only every two levels. Whereas the standard O(n lgn) layout

uses just one dimension for routing most of the wires, the H-tree makes better use of

both spatial dimensions. The recurrence describing the area required by the H-tree

is more complex than the previous one because of its nonlinear form: A(n) = 1 for

n = 1, and

A(n) = 4A(Ln/4J) + 4 /A(Ln/4J) + I

for n = 2.4k _Iwhere k > 1.

This recurrence can be solved by taking the square root of both sides of the

equation and rewriting it in terms of V/1(i), the length of the edge of the layout.

The new recurrence is a simple divide-and-conquer recurrence, which has wt)lution

O(v)'- for the edc of the liyout.

AREA-E-F-ICIENT VLSI CC0P4UIAI ION

The remainder of this chapter ceii: ains background material whicl. will be used

in later chapters. Section 5.2 contain, a formulation of the VLSI layout model, and

Section 5.3 gives the definition of a separator theorem. In Section 5.4 a nonlinear

recurrence equation is solved which describes the area of layouts generated by the

layout algorithm of Chapter 6.

5.2 The VLSI Model for Layouts

Before presenting a model for layouts, it is worthwhile to examine some of the

attributes of VLSI technologies. VLSI components-wires and transistors-are p

constrained to lie in layers on a wafer of silicon. Because the number of layers is

small (usually under six), the size of a VLSI chip can be measured by the total area

of silicon used-the layers contributing to the ability of wires to cross. Every VLSI

fabrication process has a natural metric, the minimum feature size X, which is the

width of the narrowest wire that can be manufactured. 9 The smallest transistor that

can be manufactured is a square with edge X and area X2. Since a wire of length L

consumes A L area, it is not unusual for much of the area of a chip to be consumed

by wires.

Intuitively. the VLSI model should make one-to-one correspondences between

edges in the graph and data paths in the layout, and between vertices in the graph

and processors in the layout. The mapping between edges and data paths seems

straightforward enough, but there are issues to be resolved in establishing a

correspondence between vertices and processors. One problem is that a vertex in a

graph may ha've large degree, and yet on an integrated circuit, an arbitrarily large

number of wires cannot comne together at a single point. There just isn't enough

room. A second problem arises from the fact that a processor must Gccupy nonzero

area. What assumptions shuld be nade ubut the size and slapc of that area?

atI,, .;lid (. ,,, i,, ['LI +1 it~ dtinehl ,\ t+ h: h~I ll ii tof ' it h t Ih, clll,\t'[ll iKll.,lr uiibk

PRELIMINARIES 85

We resolve these difficulties by restricting the discussion to c,, .. es of graphs with

vertex degrees that are boui,ded by a constant, and by fiirther c .,uming that vertices

require only a constant area of silicon. This assumption is similar to the one made in

Section 1.4 which helped ensure that combinational logic settled quickly. The

results of this part, however, can apply to more complex models than the systolic

model. For example, there is a simple transformation from an arbitrary graph to a

trivalent graph such that each vertex of the original graph is a block of the trivalent

graph. If processors in an alternative model can be decomposed in this way, the

results will apply. In -another variant of the model several processors may be S

connected by a single data path. By considering bipartite graphs-vertices in one set

represent processors and those in the other represent data paths-many of the same

results hold.

Having resolved the graph-theoretic issues, we now turn to the modeling of the

layouts themselves. The VLSI model proposed here is similar to that of Thompson

[411 in which wires have unit width and only a constant number (two) may cross at a

point. Vertices are placed on a rectangular grid so that each lies within a grid

square. Edges ni horizontally and vertically, one per grid square, except that an

edge running horizontally may cross one running vertically.10

Layouts that are designed with this model have the property that they are

sliceable. That is, a horizontal or vertical line can be used to bisect the layout, the

pieces can be moved apart, and the severed wires can be reconnected to realize the

original topology. Slicing can be used to generate new layouts from old ones. For

example, Figure 5-3 showks how slicing enables a new edge to be routed between

two existing vertices in a layout. Two horizontal and two vertical cuts are made

through the layout to expose the the vertices that are to be connected. (Actually,

0IiS, t I iih di l IiI ch , ,L ft ,11 1 ' ,l n im , c h it) t n lul cr i 'il n irlc-rotim2 pmoLs arns ut.e a

I! m ;.i l ;. ., , ::'l [iz v li i a l !: ,; / m l ,i . li ll ll p.' 'i . , :- p .,.,d ,1 ,l , I: xc in t l

AREA-EFFICI EN] VLSI Ct)MPUTA1 ION

I I I I

I I I I
+ + + + + + 4 - +

S I I I

+ + + " + + + + + + + + + + + +
III I I I

+ + I I I I
+ + + + + + + + 4-+ + ±+ +

I II IL r-L_

III I I ! I~

II I 0

+ - + + + + + _+ + ± + + ,

arc T t +t-
II I I

+- +- +- + +- + + + + - ±- + + + ±- +

III II I

two slices in one direction and one in the other always suffice.) The pieces are

separated by a grid unit, the severed edges are reconnected across the gaps, and a

new edge that connects the vertices is run through the gaps. If the length in grid

units of the original layout was L and the width W, the new layout has length at

most L + 2 and width at most W± 2. It should be noticed that the slices through the

layout must be straight-a staircase cut may require the pieces to be separated by

,rjre than a single grid unit for a new edge to be routed.

* 5.3 Separator Theorems

Lipton and Tarjan [25] showed that any planar graph of n vertices can be
divided into two subgraphs of approximately the same size by removing only

O(V-n) vertices. Since the subgraphs are tlenselves planar, this separaor thorem

provides a basis for exploiting the divide-and-conqUer paradigm [1s . Te shall find it

convenient to alter the definition of separator teorm that Lipton and Tarjan give.

WiCICas they origyCct a bV ip hrndl\ ith e'Clic CS. Whe S l llyot ChS. Siegt V. a

motL+2adwdha otW .I hudb*oie httesie hog h

PRELIM IN ARIES 87

are principally concerned witl casses of graphs with bounded degree, tile definition

we give is equivalent except tr the values of the constants in the definition.

Definition: Let S be a class of graphs closed under the subgraph
relation, that is, if G is an element of S, and G' is a subgraph of G, then

G' is also an element of S. An f(n)-separator theorem for S is a theorem
of the following form.

There exist constants as and cs where 0 < as < 1/2 and
cs > 0 such that if G is an n-vertex graph in S, then by
removing at most csf(n) edges, G can be partitioned into
disjoint subgraphs G, and G2 having a n and (1- a)n vertices
respectively, where as < a < 1- as.11

The set of removed edges is called the cut set of the bisection, and f(n) is
called the width of the bisection.

This definition is adequate for Lipton and Tarjan's vTh-separator theorem because

the class of planar graphs is closed under the subgraph relation. But there are many

classes of graphs for which the same divide-and-conquer approach works, yet the

class is not closed under the subgraph relation. The notion of separability can be

extended by taking the closure of the original class of graphs with the subgraphs

postulated by the separator theorem. Using this interpretation of separability, it is

easy to show [24] that the class of trees has a 1-separator theorem. (The class of trees

is not closed tinder the stbgraph relation, although the class of forests of trees is.)

We shall give additional separator theorems in Section 6.4.

Ihrougholut this ipwcr it is asit hd itho ut io ss of gcncralit. tl t a is chue,,n to pcrin t a /I to
bC ,II in cc.-r. I hi I,,, t1ilptiiIt is pvcl m krc 1- cr 1h c t i(,(,r I r c,,ilin, tu tlits hc itmC it \\ ill he
,o-'-'l C lis M vil. . O .l0%.! .. Ct , 1 l,' 111.l . ,m l , ll(. l mi k:

rcml ;,It

SS AR'A-EFFICIENI" VILSI CO)MPUTATION

*
5.4 A Nonlinear Recurrence

Stppose S is a class of graphs for which an f(n)-separator theorem has been

proved. In Chapter 6 we shall show how to lay out any graph in S. In this section 0

we investigate a nonlinear recurrence equation that will be used to relate f(n) to the

area of the layout.

Let A(1) be a positive constant, and let A(n) be defined on any integer n > 2

by

A(n) = max (/A(an)+ A((1-a)n) + f(n))2, (5-1)
as<a<1- as

for some 0 < as < 1/2.

Given a particular f(n), there are standard methods for solving such a

recurrence. We shall use a technique, however, that will enable us to solve this

recurrence for broad classes of f(n). We shall define a simpler function B(n), which

will be shown to have the property

A(n) < nB 2 (n) (5-2)

for all n. By providing an upper bound for B(n), it will be easy to use (5-2) to

bound A(n). 0

We define B(n) as V/ iY for n = 1, and as

B(n) = max (B(an) + f(n)/v-)
as<a<l-a s

for n > I. Property (5-2) holds for n = I by the definition of B(1). Making the

inductive assumption that it holds for xalucs less than n,

-

*U

PRELIMINARIES 89

A(n) < max (\'ar, B2(an)+(1-na)nB2 ((a)n) + f(n))2

as~a <1- a

< max (VanB 2(an)+(1-a)nB2 (an) + (5-3) 0
as5a <1- as

<_ max (VnBz(a n) + f(n))2
as<_., <I- as..

< max n (B(a n) + f(n)/V--)2
as5a l - as

- n B2(n).

Line (5-3) in this proof follows from the consideration of two cases. If

B(an) > B((1-a)n) for the value of a that realizes the maximum, then (5-3) be

derived from the previous line by straightforward substitution of B(an) for

B((1-a)n). On the other hand, if B(an) < B((1-a)n), then substitution of

B((I -a)n) for B(an) followed by a change of variable of 1-a for a yields the

same result.

It remains to evaluate B(n) which, except for the maximization, is a simple

divide-and-conquer recurrence that can be solved by iteration. Thus

B(n) - f-n) + + f+__n . + B(aia 2."arn) (5-4)V V~ Vaoa2n

w-here r < -log, asn: each value al, a., a LX is the value of a that realizes the

maximum at each staiie of the iteration: and the product aa 2 ... ar equals 1/n.

Upper bounds for Equation (5-4) can be determined on the basis of suitable

assumptions about f(n). The upper bounds in Table 5-4 were determined by
It

evaluating this summation according to the indicated assumptions ahout f(n). The

oer bounds for 1(n) were dericdi b., defining a function C(n) that is similar to

B(n) but that protilcs the bound Af(n) > nC 2 (n).
-TO tLc1ll141StUAttC lil" III: r 11)1C l u- h d 1)[t c [1h d C111-\'. 1, is 1. .,1:ff1cient ito

90 ARL\.FI.1l-EFF ENT \"I.si uA MU flAION

* U
Table 5-4: Solutions of Recurrence (5-i).

f(n) B(n) A (n)

O(nq), q < 1/2 0(1) O(n)

O(V_7lgkn), k >0 O(lgk ln) O(n lg2. +2n)

Ua(,zq), q > 1/2t O(f'(n)/ Vn-) O(f2(nl))

tSec text for an explanation of this entry.

assume only that f(n) = Q(n q) for some q > 1/2 as the table implies. In addition

the function f(n)/V'T must be well-behaved in the following sense.

Definition: A function g(n) is said to satisfy Regularity Condition C1

* if there exist positive constants c1 and P, such that cl < 1, P3l < 1/2, and

g(fln) <_ c g(n) for all sufficiently large n and all P3 in the range

Making the assumption that f(rv-v satisfies Condition C1 with fll = as, we can

now prose the third line of th,,; 1able. For large n and a s <a, < 1- as , we have

V f(aln) f(n)
Va n Vn

and in general tbr each term in Equation (5-4)

f(a 1 a ... an) f(n)< c I _
\ta 2 ... ,kn /

Sub,,titUtil', these tWrs ill Fquation (5-4) gives-the bound

(n) <)(1 i- c c + .. .) + constant,

Mhich is O(f(!,)/vT ') since c1 < 1. The con-;tant arise:s frow the finite 1iiumber of 9

\' .lille,; lllil ;irlc i t lll l ' 'i .[1, LiC, aCCOBlii'(t the l,) 01C it\ C(tdiliil.

U PI

I'REIL! INARIL-S 91

We have just shown that J.e third entry in the table hcAds ff(n)/'v'T saiisfics

Condition C1. What can be deduced from a weaker assumption? Suppose, for

example, that we only assume that f(n)/v7T is monotonically nondecreasing, that is

f(an) f(n)

II
for all n > 2 and all a in the range as _ a < 1-a. Since there are only O(lgn)

terms in the summation (5-4), it follows that B(n) = O((f(n)lgn)/V'f) and

A(n) = O(f 2(n)lg2n). A factor of lg2n in area is paid because monotonicity is a

weaker constraint than Regularity Condition C1 on the well-behavedness of
f(n)/VT-.

The layout construction of the following section will need to assume that A(n)

is itself well-behave I according to a different regularity condition.

Definition: A function g(n) is said to satisfy Regularity Condition C2
if there exist positive constants c2 and 92 such that 92 < 1/2 and

Ilk g(fn) > c-g(n) for all n > 2 and for all p in the range P2 < '< 1-92.

Thie qualilication "for all n > 2" in this definition seems to be stronger than the

phrase "for all sufficiently large n" which was used in the definition of Regularity

* Condition C1. If all the values ofg(n) are positive, however, the two qualifications

are equivalent-although the values for the constants may be diffe"nt.

Condition C2 is always s.atislied by the solutions o" A(n) shown in the first two

lines of Table 5-4, but not necessarily by that in the thired line. To guarantee that

A0n) satisfies Condttion C2 in this instance, it is sufficient to assumC that f(n) it~cl"

sIAtish1es Condition C2 in addition to the prcvi-)us as:mmpti ">.t

f(n)/vT satisfies C1.

The reader shtUld be aware that most cf the linctilon, :P'' "

theoreM will idteed stisfy ti]cse rcgnUlrit. conditi&,ns. -

conditions are sati:,dlcl by all kinctions (l4the l~in '?;

- I

-Ai123 318 AREA-EFFICIENT VLSI COMPUTATION(U) CARNEGIE-MELLON UNIV 2/2
PITTSBURGH PA DEPT OF COMPUTER SCIENCE C E LEISERSON
OCT 81 CHU-CS-82-188 F336i5-78-C-i55i

UNC LRSSIFIEEFG 92 N

EhEmhEmhEEmhhE
oImEmhEEEEEEEE
MOLL

111.0 ;
Ihmh12.2

Lu

1.25 11-.

:1 MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDOS-1963-A

r? -C- .r - -. -- - - - - -- - - - -. ' -- 77 i

-. 92 AREA-EFFICIENT VLSI CO.v1'UTATION

such that c and q are positive. Similkr regularity conditions are assum .d elsewhere

i.i the literature (e.g. [1], [4], and [6]' n order to determine the asymptotic behavior

of general complexity functions.

pr

- . . ~ * 7 ~ - *-.- .

"-
CHAPTER 6

A Layout Algorithm

6.1 Introduction

The main contribution of this chapter is an algorithm which, given a separator

theorem for a class of graphs, can lay out any graph in the class. First, however,

some results regarding the areas and aspect ratios of layouts are proved in

Section 6.2. Section 6.3 presents the layout construction. Among the corollaries of

this result are that an arbitrary binary tree with n vertices can be laid out in linear

area, and planar graphs can be laid out in O(n lg2n) area. In Section 6.5 an

implementation of the layout algorithm is presented which is based on the
UNION-FIND algorithm analyzed by Tajan [40], and it is shown that the time

required for maintaining the representation of a layout is nearly linear.

6.2 Areas and Aspect Ratios

The size and shape of a rectangle are uniquely determined by its length L and

its width W, where we shall assume that L > 14' > 0. But there is another

coordinate space for specifying sizes and shapes of rectangles-area and aspect ratio.

Everyone is familiar with area and knows that the area can be defined as the product

L W. The aspect ratio a is defined as the quantity WIL, which is at most one.

Given the area and aspect ratio of a rectangle, its length and width arc given by

L V /r and W = AFTI

93 li

K AREA-EFFICIENT VLSI COMPUTATION

Suppose a graph has a VLSI layout of area A and aspect ratio a It is natural

1, ask whether there are other layouts of the graph that have different dimensions

but similar area. The following theorem shows that a long and skinny layout can be

made into a square layout (aspect ratio of one) by paying only a constant factor

* increase in area.

Theorem 6-1: If the bounding rectangle of a given layout has area
A, then there exists a topologically equivalent layout that can be enclosed
in a square whose area is at most 3A.

Proof Let the length and width of the original layout be integers L and W. If

L <3 W, then a square with side L satisfies the constraints of the theorem. Now

suppose L > 3 W. The layout can be sliced in several places and "folded" like a

roadmap with the severed wires connected around the corners. Figure 6-1 shows a

square with side s = LV' J in which a rectangle has been folded. This rectangle is

the longest rectangle of width W that can be folded into the square, so if we can

prove that the length of this rectangle is at least L, then we will have demonstrated

that the original layout can also be folded to fit in the square.

r C.

Li

__I -

Figujre6-1: A layout can be "folded" to fit into a square.

Let k =Ls/WIt be the number of pieces into which this longest rectangic of

A LAYOUT ALGORITHM 95

width W has been folded. Thc rectangle is made up of two long pieces and k -2

short pieces. Since L > 3 W implies s > 3 W, the short pieces must be at least s/3

grid units long, and the long pieces must have length at least 2s/3. Thus the total

length of the folded rectangle is at least (k -2) s/3 + 2 (2s/3) = s (k + 2)/3.

Because k is the largest number of pieces of width W that can be folded into

the square, it follows that k + 1 pieces of width W will not fit. Therefore, the length

s of the side of the square must be strictly less than W(k + 1), which means

s < W(k+I) -L

By definition of s, the quantity (s+ 1)2 must be strictly larger than 3 A, and hence

3LW < (s+1) 2 1 = s(s+2). WI
Substituting for s,

3LW < s(W(k+l)- 1 + 2)

= s(W(k + 1)

< sW(k+2)

since W > 1. Cancelling W from both sides and dividing by three yields

L < s(k + 2)/3. But the righthand side of this inequality is the value that we earlier

demonstrated was less than or equal to the total length of the folded rectangle. Thus

L is less than this total length, which was to be proved.12 r3

Can one "unfold" a square layout to make it arbitrarily long and skinny

without paying a large increase in area? Not always, and a unit square layout

provides the coutnterexample. If we insist that the side of the square be large, the

answer is still no. For example, we showed in the introduction that an n-leaf

complete binary tree can be laid out in O(n) area. But in Section 7.2, we shall prove

121t shtild lie mentioncd that d- .'orst caise is chiewd %lhen a onc-h-io c rcctandIc is Ibelded

ino a Ihrc-y-thrco' sql;~irc.

9t AREA-EFFICIENT VLSI C(MPUTATION

thit the minimum dimension of that area must have order at least Jgn. Thus to

t c.Adeve good upper bounds for layouts, it seems prudent to avoid those that have
small aspect ratios.

The technique presented in Section 6.3 to construct area-efficient layouts

recursively bisects rectangular areas. To avoid creating arbitrarily long and skinny

rectangles during the recursion, it is important that the aspect ratios of the generated

rectangles be bounded below by a positive constant. The next lemma sets forth

*" conditions whereby a rectangle whose aspect ratio is so bounded can be bisected

into two rectangles whose aspect ratios are similarly bounded.

Lemma 6-2: Let R be a rectangle with area A and aspect ratio aR,
where orR > for some a in the range 0 < a < 1/2. Suppose R is
bisected parallel to its short side into two rectangles R1 and R2 whose
areas A1 and A2 are A and (1-J)A for some in the range
a < < 1- r. Then the aspect ratios of the subrectangles are bounded
below by a, that is, a R a and R> r.

1 2

Proof. Without loss of generality, we consider R1 only. The proof may be broken

into two cases. If a > 0 R, then the aspect ratio of Ri is oRiJ. This is bounded

below by a since a < OR implies that r < a/ _< a On the other hand if

S< rR' then the aspect ratio of R1 is /UR" But a bounds from below, and

hence a < a/or < R.

Suppose a square is divided into two rectangles so that the ratio of the area of

the smaller to the larger is at worst a /(1- a), and then the rectangles are themselves

subdivided by at worst the same ratio of areas, and so forth. Lemma 6-2 says that if

the bisection is always parallel to the short side, then no rectangle is ever generated

whose aspect ratio is worse than cr. The divide-and-conquer construction in

Section 6.3 will use this result.

A LAYOUT ALGORITHM 97

6.3 Area-Efficient Layout Construction

Area-efficient layouts can be obtained through the use of the divide-and-

conquer paradigm. This section presents a construction which takes a graph and

divides it into two subgraphs which are recursively embedded. The two sublayouts

are then sliced to expose the vertices with edges in the cut set and then those edges

are routed as described in Section 5.2.

Theorem 6-3: Let S be a class of graphs for which an
f(n)-separator theorem has been proved, and let as and cs be the
constants postulated by the separator theorem. Suppose A(n), which is
defined by Az(n) = 1/cs2 for n 1, and

A(n) = max (A(an)+A((1-a)n) + f(n (6-1)

assa:l-as

for n > 1, satisfies Regularity Condition C2 with /2 = as. Then any.
n-vertex graph G in S can be embedded in any rectangle whose area is at
least

As(n) (4Cs 2/as) A(n), (6-2)

and whose aspect ratio is at worst as , where as is defined to be the value
of c2 in the regularity condition.13

Proof. Let G be an n-vertex graph in S. The following recursive construction

shows how to embed G in a rectangle R whose aspect ratio aR is at most a s and

whose area is As(n). Without loss of generality, view rectangle R so that the longer

side which has length V\As(n)/1a is parallel to the horizontal axis, and so that the

shorter side which has length V/a As(n) is vertical.

Step 0. Initial condition. If ,i = 1 then the graph G is just a single vertex.

Rectangle R, which has area As(l), must contain a grid square because each

13Thus the entrics for. I1,) in fIdhle 5-4 can be useid to cvau latc ,0(n) since these two fiinciion.
dillr b% at nillot a %d ol,t~int I'actr.

.. • - +-.+.-. .. .
ii i: + . i+,i . Ti l Li ? .i .- - . .- , . . _ • ?, •. . . • + -_ 1

AREA-EFFICiEN' VLSI CO'PUTATION

dimension of R is at least two, a fact '1, t is easily verified. Thus the th -orem is true

for the initial condition by simply jitibedding the single vertex in the grid square

and returning this layout as the result of the construction.

Step 1. Partition. Using the f(n)-separator theorem, divide G into two disjoint

subgraphs G and G2 that have aGn and (1- aG)n vertices respectively, where

Sas < 1c < 1- as . The number of edges in the cut set is at most csf(n).

-+ + +4 +t +4 + - +- +- +- - + +..-

- +- + + + +- - + + + + +

+ + + + + + + + + + + +

VT-A4- -t- 4- 4- 4- 4- 4- +- + - -R T- -

RR

+ + + + + + + + + -4- +

- - - - - --- +
+ + + + + + + + + + + + +

/ 'As (aa,+) +As ((-G)n) "7,'-

Figure 6-2: The relationships among rectangles in Step 2.

Step 2. Solve the subproblems. Remembering that rectangle R is oriented with

its longer side horizontal, define R to be a similar rectangle to R that has area

As(a n)+ AS((1- a)n) and sits in the lower left corner of R. (See Figure 6-2.)

Apply Lemma 6-2 with

An) As(a 1n)

A(aGn) + A((- aG)") AS(aG"1 + AS - a)n)

ad")

- •. -- ,- , . - ° . - -.-. . . . * -

A LAYOUT ALGORITHM 99

to divide R0 into two rectangles R1 and R2 whose areas h.'e As(an) and
As((1- aG)n). The aspect iatios ofR 1 and are bounded belw by as since

A(ctan) A(aGn)as < <
A(n) A(a n)+ A((1-aG)n)

- 1 - A((1-aG)n) < 1- A((1-aG)n) < 1-

A(aGn)+A((l-aG)n) A(n)

which follows from the definition (6-1) of A(n) and Regularity Condition C2. Now

solve the subproblems by recursively embedding G1 in R, and G2 in R2.

Step 3. Marry the subproblem& For each of the csf(n) edges in the set of

removed edges, make at most two horizontal and two vertical slices through R0 to

route the edge between its incident vertices as was shown in Figure 5-3. The length

of this new layout is length (Ro)+ 2 csf(n) and its width is width(Ro)+ 2 csf(n). It

remains to be shown that this layout actually fits in rectangle R, viz.

length(R) > length(Ro) + 2Csf(n), (6-3)

width(R) > width(Ro) + 2csf(n). (6-4)

To prove these inequalities, mathematical induction can be used to give an

alternative definition of As(n) to that of Equation (6-2): As(n) = 4/a s for n = 1,

and

As(n) = max (/As(an)+ As((1-a)n) + 2csf(n)/V'-s) 2

as<a <1- as

for n > 1. We can now use this definition to prove Inequality (6-3) since

length(R) = s n aR

> V(AS(aGn)+As((l--aG)n))/aR + 2csf(n)/V sa R

> lengih(Ro) + 2csf(n),

%%hich lbllows firoi the Il'tct that (TrS, I. r"he pro, 'f Icluadlity (6--4) laks

use orihe lact thdt{t < aR, whence

................
. . -

-'lO AREA-EFFICIENT VLSI COMPUTATION

width(R) = VRs(n)

> V[/As(aGn)+AS((1-aG)n)+ 2csf(n)/Vs)

> width(R0) + 2 cSf(n)VRa-;is-

> width(R o) + 2 csf(n).

We have shown that the layout actually fits within the bounds of rectangle R,

- which completes the proof of Theorem 6-3. 0 '- I

144

6.4 Corollaries of the Main Result 4

Upper bounds on the areas of VLSI layouts for many graphs can be immedi-

ately derived as consequences Theorem 6-3 and Table 5-4. Some of these

corollaries are enumerated in Table 6-3.

The separator theorems of Section 5.3 produce the first two results of the table.

Since the class of tree graphs has a 1-separator theorem, the first line of Table 5-4

says that any tree or forest of trees has a layout whose area is linear in the number of

vertices. Lipton and Tarjan's v'if-separator theorem for planar graphs gives,

according to Line 2 of Table 5-4, an O(n lg2n) area upper bound for the layout of

any planar graph of n vertices.

"":'. uterplanar graphs are triangulations of polygons, perhaps with some edges
removed. The author has proved a 1-separator theorem for the class of outerplanar

graphs, and thus these graphs have linear area layouts. The separator theorem for

trees is subsumed by this result because every tree is an outerplanar graph.

The X-tree graph [341, which is shown in Figure 6-4, is a complete binary tree

with brother connections. One could attempt to lay out this graph by modifying the

14 lhe results reported in this section on trees and planar graphs have been discovered
independent]) by I.. G. Valiant 1421. In Ifat. Valiant was able to show that trees could be laid out in
linear rea ilh% nil cro-sqw ,-s. -Io. . W. I o, d n d \ J. I). l lh .,ii [IJI hare iIcd .,in ilar tichniiucs
10 .sliow Ih.t(aii) ICtellr c il c.. 1 n l he rcu ni,,d h a lilicar-arcaic luit.

WI

,...........-...

ALAYOUT Al .GORITHM i~l

Table 6-3: Areas of graphs.

Class of graphs Area of layout

Treest O(n)

Planar graphs 0(n lgln)

Outerplanar graphst O(n)

X-rrees (n = 2k).. O(n)

k-dimensional meshes (k > 2)t1 ~ 22k

Graphs of genus k(k>O) 0(k 2 nlg2 n) *

Shuffle-exchange (n =22) 0(112ign)

Cube-connected-cycles (n =k2k)t Q(112/g 2 n)

tnhese results are optimal to within a constant factor.

H-tree layout (an interesting exercise), but proving that the class of X-trees has a

lgn-separator theorem is easier. Bisect the graph with a vertical line that cuts at

most (lg n)± 1 edges. Each of the two halves can be bisected similarly, once again

cutting at most (lgn)+1 edges, where n is now the number of vertices in the half

Since lgn = 0 (11q) for any positive q, Line 1 of Table 5-4 shows that any X-tree .
can be laid out in linear area.

Figure 6-4: The X-trcc on 31 25 - I vertices.

A k-dimensional mesh is a graph in which each vertex is connected to its

nearest ncighbor in each of k dimensions. Any class of k-dimensional meshes for

somie constant k has an easily proved nib/-.separator theorem, adtu fk>3

an n-vertex graph in the class has an 0 (/12-2/k) area layout by v'i-t1Ic of Line 3 of

Tabic 5-4.

102 AREA-EFFICIENT VLSI CCMPUTATION

A graph of genus k is a graph that can be drawn with no crossover.- c.n a sphere

that has k handles attached. It has been shown [2] that there is a subs.t of O(kV/-)

vertices whose removal yields a planar graph. Applying Lipton and Tarjan's result

gives a kvr/h-separator theorem. Line 2 of Table 5-4 provides an upper bound of

O(k2 nlg2 n) for the layout area of an n-vertex graph of genus k.

In [17] Hoey and this author prove a separator theorem for the shuffle-

. exchange graph [37] on n = 22 vertices. Although the function in this separator

theorem does not satisfy the regularity conditions of Section 5.4, the techniques of

this paper do apply, and a O(n 2/lgn) area layout can be obtained which improves

the bound of O(nsIv-T) given by Thompson [41]. Recently, however, 'ave

been able to improve this result by showing that the O(n2/lgn) bound holc ,r all

shuffle-exchange graphs on n = 2 k vertices. This new result, however, doe! ise

the techniques in this paper.15

Preparata and Vuillemin provide an O(n2 1g2 n) area VLSI layout for their

cube-connected-cycles network [331 on n = k2k vertices. The topology of this

network, which is depicted in Figure 6-5, can be derived from a boolean hypercube

of 2k vertices by replacing each vertex with a cycle of k vertices. This graph has a

nAgn-separator theorem since removing all edges in one dimension of the original

hypercube bisects the graph, removal of those in another bisects the halves, and so

forth for all k dimensions. The area bound O(n 2/lg 2n) that is given by Line 3 of

Table 5-4 is the same as the area of the layout which is given in [33].

Upper bounds in Table 6-3 that are optimal to within a constant factor are so

designated in the table. The linear upper bounds are clearly optimal because every

graph requires 0(n) area. The other lower bounds can be obtained from a result of

Thompson [41]. The minimum bisection widih of a graph is defined to be the

15Recently, this result was improved to the optimal O(n 2/lg 2n) by Kleitman, Leighton, Lepley,

and Miller of MIT.

A IAYOUI ALGORITtHM 103

Figure 6-5: The cube-connected-cycles network on 24 = 3 23 vertices.

minimum number of edges that must be cut to divide the graph into a [n/2J-vertex

graph and a fn/21-vertex graph. Thompson proves that tle area of a graph has

order at least the square of the minimum bisection width of the graph. This lower

bound argument is surprisingly similar to an analysis of printed circuit boards given

in [39].

Using another of Thompson's arguments, it can be shown that the shuffle-

exchange graph and the cube-connected-cycles graph have minimum bisection

,widths of order at least n/lgn. This arises from the fact that these networks can

realize an arbitrary permutation in O(Ign) communication steps. Thus if one of

these graphs is partitioned into two halves, it must be possible to swap data items

between the halves in O(lgn) time. Since there are U(n) data items to be swapped,

at least order n/lgn data cross between the halves during each time unit, and hence

the minimum bisection width of these graphs is (I/lgn). The area of any VLSI

layout for these graphs must therefore have order at least n2/lg2 i. Thus the upper

bound for the cube-connected-cycles graph is cptimal, but there is a discrepancy in

the bounds for the shuffle-exchange graph.

There is also a discrepancy in the the upper and lower bounds for planar

graphs. The methods given above give only a linear area lower bound compared

with the O(11 I 2n) tipper bound. The author believes it more likely that the tipper

bound can be improved bcause he knows of no planar graph that requires more

1I'4 AREA-EFFICIENT VLSI COMPUTA rION

Than linear area, and in addition, planar graphs appear to have consiCrably more

structure than is captured by the VT.,-separator theorem alone.

6.5 An Efficient Implementation of the Layout Algorithm

If a separator theorem can be proved for a class of graphs, Theorem 6-3 can be

used to give an upper bound on the area of a VLSI layout for a graph in the class.

If, however, a separator algorithin is given for the class of graphs, the steps in the

proof of Theorem 6-3 constitute an algorithm that can construct a VLSI layout for a

graph in the class. In this section, we provide an efficient implementation of this

algorithm and analyze its performance.

The layout algorithm uses the separator algorithm as a subroutine, and

therefore has an execution time that depends upon the efficiencies of both this

subroutine and the bookkeeping necessary for the production of a layout. The

analysis here reflects this dichotomy. The total time required to lay out a graph of n

vertices can be expressed as the sum of (i) the total time devoted to the repeated

executions of the separator subroutine on the generated subgraphs plus (ii) the time

devoted to the management of the layout representation. Later in this section, we

shall present a fast bookkeeping scheme that is based on the UNION-FIND algorithm

analyzed by Tarjan [40]. But first, we analyze the amount of time required by the

imany executions of the separator subroutine.

The layout procedure has no direct control over the efficiency of the separator

subroutine. In fact, it might be the case that all the graph bisections have been

previously computed so that the subroutine is deceptively fast. For the analysis

here, however, we assume that the subroutine is invoked in-line, and that s(n) is the
time required by the separator Subroutine to bisect a graph of n vertices. We can

exprdss the relationship of S(n), the total amount of time required for all executions

of the subroutine during the la ing out of a graph of n vertices, to s(n) by the

recui renice S(n) 1 For n = 1, and

BI

A LA'VOU' ALGORITHM 105

S(n) S(a n) + S((1-a)n) + s(n) (6-5)

for n > 1, where a varies in the range as < a < 1- a.

Bounds for S(n) can be determined by the same technique used to solve

Recurrence (5-1). Define R(n) S(1) for n = 1, and

R(n) = max R(an) + s(n)/n
as <a <1-a s

for n > 1. The bound

S(n) < n R(n),

which holds for the case n = 1, also holds for all values of n greater than one, as is

shown by induction:

S(n) < anR(an) + (1-a)nR((1-a)n) + s(n) f

< max anR(an) + (1-a)nR((1-a)n) + s(n)
as-a -1- as •

< max nR(an) + s(n)
asa Sl- as i

< n R(n).

The results enumerated in Table 6-6 are derived by evaluating R(n) to provide an

upper bound or S(n), and using a similar finction to bound S(n) from below. Let

us look at this table in greater detail.

The first line is a bit of a red herring. It says that if the execution time of the

sicarator subroutine is polynomially less than linear in the number of vertices in the

graph, then the contribution to the total running time is linear. It should be

apparent, however, that this precondition is rarely satisfied in practice. After all, it

takes the subroutine at least linear time just to look at all of its input. - ,
The second line of Table 6-6 is more usual-the stubroutine requires approx-

imately linear time. In this case, the total time required by all executions of the

subroutine is only a logarithmic factor larger than the time needed by the initial

L " --" l -i

1t. , AREA-EFFICIENT VLSI CoMrUTATION -

IF

Table 6-6: Time devoted to the separator subroutine.

s(n) S(n)

(nq), q < 1 0(n)

o(nlgk,,), k > 0 o(nlgk+ln)

Q(, q), q> it e(s(n))

tThe function s(n)/n must also satisfy Regularity

Condition C1.

invocation of the separator subroutine on the graph presented as input to the layout

procedure. Tree graphs have a linear-time 1-separator algorithm that is not difficult

to construct, and thus according to the table, the layout algorithm would spend a

total of 0(n lgn) time executing this as a subroutine when producing a layout for an

n-vertex tree. Lipton and Tarjan's v'h"-separator algorithm for planar graphs also

runs in linear time, and thus only O(n Ig n) time is needed for all of its executions.

The third line of the table says that if the execution time of the separator

subroutine is polynomially greater than linear, then the time required by the first

call, which bisects the n-vertex input graph, dominates the time for subsequent

invocations. This analysis is based on the supposition that s(n)/n satisfies

Regularity Condition C1. When only monotonicity is assumed, the total time is

O(s(n)lgn).

Now that the costs due to the f(n)-separator algorithm have been determined,

we turn our attention to the bookkeeping required to maintain the layout represen-

tation. The implementation proposed here makes extensive use of the UNION-FIND

algorithm analyzed by Tarjan [40. This algorithm provides two instructions for the

manipulation of disjoint sets. Fi:ri,(x) determines the name of the unique set

containing element x, and UNION(X, Y,Z) combines the elements of sets X and Y

into a new xt Z. The [nalysis in [101 shows that the lime rcq~uied to execute 11

U ip

A lA.;'% Our ALGORITHM 107

UNION operations intennLxed with in > n FIND's is O(ma(in, ,)) where a(in, n) is

related to a functional inverse of Ackermann's function anid grows extremely

slowly.16 We do not go into a description of the algorithm here-a good one can be

found in [1]-but we shall use the UNION and FIND operations and the results of

Tarjan's analysis. +- 4- + + + + +
+- +-4 + +- +- +-

+ + -+ - -

+- ++ - + +- +- +- +-"

Figure 6-7: The representation of a layout.

The key to the performance of the layout procedure is the sparse represen-

tation of layouts depicted in Figure 6-7. Each important point of the layout is kept

in two sets, an x-sei that represents its x-coordinate in the layout, and a y-set that

represents its y-coordinate. The important points in the layout are the vertices in

the graph and the endpoints of the horizontal and vertical edge segments. The

UNION-FIND data structure maintains the relationship between a point and its

corresponding x- and y-sets. In Figure 6-7, this association is denoted by the

curved arcs. All the x- and y-sets for a layout are kept in linked lists. The actual

! x-coordinate represented by a given x-set is therefore determined by its distance

from the head of the list. Pointers are used to maintain relationships between

16 I'jrjan c(nnlfenlf diat for all practical purposes, a (n, n) is less than or equal to three.

.% - , . , . .• = . . . ' . , ., , . -. . -. .* - -•.

108 AREA-EFFICiEN 1' VLSI CO. ii'UTATION

points. For example, an edge seg,rnnt is represented by a point.r from one

Lndpoint to the other.

+ + 4 + 4- +- + + +- +- +- +

+- 4- +- + +- +- 4- +- +- +- 4-

S + +- + + + +- + +- +- +- - +- + + + + +- + +- + +

+ +

0 .

+ + + + ++ ++ + + + ++ + + + + + + + +

+ + + + + + + + +- + x + -E + + + - +- + + +

+ + 4- + + + + + - +- + + + + + + + + *1- + +

+ + + + + + + + + + + + + + -4 + + + + + +

+ +

x++ x 3 +

"-']-. F + + + + + + + + + + +

.- i E + + + + 4- + + + + + +

+ + + + + + +4- ++

+ + + + + +

+ + + + + + + + + +* + "

. .

+ + + + + + + + + + +
.

x

Figure 6-8: Routing an edge by slicing.

There are two important operations that must be perfomied during the layout

algorithm-slicing a layout to route an edge and combining two sublayouts into a

single layout. Routing a new edge between two vertices by slicing can be e

accomplished easily by the following procedure, which is illustrated in Figure 6-8.

pI

A LAYOUT ALGORIrHM 109

1. For each of the vert;,.es, FIND the x-set and the y-.,et to which it
belongs.

2. Adjacent to these x- and y-sets in the linked lists, insert new x- and
y-sets. effectively adding new slices of layout. Because pointers
represent the horizontal and vertical components of previously routed
edges, the components are not severed and reconnected as was de-
scribed in Section 5.2. Instead, they "stretch" automatically.

3. Add the new points for the edge to be routed to the appropriate x- and
y-sets, and route the edge using pointers to represent the edge compo-
nents. Each new point belongs to the x- and y-sets of the previous two
steps.

Because we are considering only those classes of graphs that have bounded

venex degree, the number of edges to be routed during the entire course of

execution of the layout procedure is linear in n, the number of vertices in the input

graph. "he routing algorithm above is called once for each edge, and hence the total

Dumber of invocations is linear in n. During each invocation, a constant number of

FIND's are executed, -nd the rest of the work takes only constant time. Thus the

overall cost is the time to execute a linear number of FIND's plus another term

which is linear. Since each FIND requires more than constant time, the linear

number of FIND's dominates.

The cost of the FIND'S cannot be determined without also knowing the number

of UNION's that must be performed. The layout algorithm uses the UNION

. operation in the following procedure, which combines two layouts into one.

* (Without loss of generality, assume the layouts are side-by-side in x.)

*
I
.1. Append one linked list of x-scts to the other. This will produce a list

of x-scts for the combined layout such that all of the x-coordinates of
one sublayout lie to one side of all the x-coordinates of the other.

2. Traverse both linked lists of y-sets, and UNION corresponding y-sets to
produce tile linked list of y-sets for the the resultant layout. That is, the
kth v-set of the fina'l hlyout is obtained from the UNION of the kth
),-sets of the stiblayot;ts.

6 -The time to morpe two layouts is dominatcd by the time to do the UNION'S.

AREA-EFFICIENT VLSI COMPUTATION

Te number of UNION's varies ea h time two layouts are combined because it is

detpendent upon the lengths of the linked lists that are merged. If (R is the aspect

ratio of R, the rectangle that contains the combined layout, then the length of the

linked list is V'URAs(n) since R is always bisected parallel to its short side. This

leads to the following recurrence which describes the total number of UNION's

executed by the layout algorithm: U(n) = 0 for n = 1, and

U(n) = U(an) + U((1- a)n) + V[/aAs(n)

for n > 1, where a varies in the range as < a < 1-- and UR varies in the range

s < aR < '_ as . This recurrence equation is similar to Recurrence (6-5) which

describes time devoted to the execution of the separator subroutine. In fact, the

same asymptotic results enumerated in Table 6-6 are valid when VAs(n) is

substituted for s(n). Notice in particular that if As(n) = O(nq) for some q < 2,

then U(n) = O(n).

We now have a relationship between the area of the layout As(n) and the

number of UNION's U(n). But As(n) was determined, after all, by f(n), the width

of the separator. (Do not confuse f(n) with s(n), the time required to execute the

separator subroutine.) Carrying this relationship through, the number of UNION's

U(n) can be expressed in terms of f(n), and then, using the fact that there are only a

linear number of FIND's, the total time required by the management of the layout

representation can be determined. Table 6-9 enumerates these results, where T(n)

is the time required by the bookkeeping to lay out a graph of n vertices.

The first line of the table can be derived by observing that if f(n) = O(1 q) for

q < 1 and is monotonic if f(n) = f2(v/7'), then As(n) = Q(n1 2q) and, as was noticed

earlier, U(n) = 0(n). Bccause the total number of FIND's is also linear in n, the

total time required for bookkeeping is O(na(n, n)).

The second line of the table gives the worst-case running time tbr the

bookkeeping thft occurs when there is no better than an n-separator theorem. In

* P

W 111
A LAYOUT ALGORITHM

Table 6-9: Time devoted to the management of the layout rcpr ;entation.

fAR) T(n)

0(qq <ilt 0(n a(n, n))

9(n) e(nlg n)

tine function fln) must also be monotonic if
fln) = G(n").

this case the area given by the layout procedure is 0(n2), and the time to combine

layouts is 0(n Ign). Other b~ounds are readily derived for cases when the growth of

f~n) lies between nq for q < 1 and n. For example, if f(n) =n/lgn, then the time

for bookkeeping is O(nlglgn). Thus even if the separator algorithm is only

marginally good, the bookkeeping time is nearly linear.

CHAPTER 7

Further Layout Results

7.1 Introduction

The results of the previous chapter can be applied to other layout problems.

Section 7.2 considers layouts where vertices are required to lie on a straight line.

The results for this model can be easily generalized to the model where all vertices

are constrained to lie on the (convex) perimeter of the layout. The techniques of

Chapter 6 are employed to provide area bounds for graphs based on separator

theorems for the graphs. In addition some lower bounds are presented that

demonstrate the optimality of the constructions for trees and planar graphs.

Section 7.3 contains a design for an O(n lg2n) area chip that can be configured

to implement any tree of processors by making only n solder-dot connections such

as are used in gate-arrays. If n connections can be broken as well, there is an

'4 O(n lgn) area design which can be configured to implement any tree. These results

can be generalized to arbitrary graphs.

Section 7.4 considers how a complete binary tree may be partitioned into chips.

The major constraint in chip partitioning is the limit on the number of off-chip

connections or pins. An arbitrarily large, complete binary tree can be built from a

single type of chip whose pin count is independent of the size of the tree and whose

chip area is efficiently utilized.

112 *

FUR I I WRI LAY OU] tF~suIFs. 113

7.2 Layouts with Collinear Vertices"7

Figure 7-1 shows how an f(n)-separator theorem can be used to construct a

layout with collinear vertices. First, the graph is bisected by cutting at most csf(n)

edges. Then layouts are recursively constructed for the subgraphs and are placed

side-by-side along the baseline Vertical slices are made through the layouts, and

edges are routed in the space above.

1T T-i
H~Han)

Figure 7-1: The construction of a layout with collinear vertices.

The analysis of this construction is much easier than thiat in Section 6.3. Since

at most two vertical slices are made for each edge, the length .of the layout along the

baseline is 0(n). The height H(n) of the layout is a constant for n = 1, and

H(n) = max H(a n)+csf(n)

for n > 1.

* If fln) is nondecreasing, then 11(n) =0(f(n)lgn) and the total area A (n) is

therefore 0(f(n)nlgn). In particular, if f(n) = O~gkn), then

AS(n) = 0(n lgk + In). I f f(n) is Q2(n q) for some q > 0 and fln) satisfies Regl arity

Condilion C1, then H(n) =0(fln)) and AS(n) =0(tif(n)).

This means that planar graphs can be embedded on a line in 0(nVn) area and

171"Of dhe rescirch reported in this sechiof. thec ti pper bounds on die .arvas of trees and phitnar
graphs~ repr-ecia joint worlk witl my) aid% ior, Jon L. liciiLlc%

14 AREA-EFFICIENT VLSI CO i!'UTAlION

trees in O(nilgn) area. We now shG'v that thcse embeddings for trecs and planar

graphs are optimal to within a curstant factor. A similar result on trees was

independently discovered by Brent and Kung [7], who show that in any layout of a

-- complete binary tree, the area devoted to wire must have order at least nlgn. The

-' approach here differs in that we show that the convex region containing the layout

must have Q(n lgn) area.

Lemma 7-1: For any complete-binary-tree layout of n =2k1

collinear vertices where k > 0, there exists a perpendicular to the baseline

that lies between the leftmost and rightmost vertices and cuts at least
[k/21 edges and vertices.

Proof. (Induction.) The lemma is easily satisfied for the initial cases of n = and
-2.

n = 3. For the general case, consider the four subtrees of size 2 k-2 -1. (See

Figure 7-2.) Call the leaf that is leftmost on the baseline v, and let w be the

rightmost leaf that is in a different subtree from v. Choose one of the two subtrees

that contain neither v nor w. The inductive hypothesis gives us a perpendicular that

cuts [(k-2)/21 edges or vertices in the subtree. Since v and w are in different

halfplanes as determined by the perpendicular, the path between them must be cut

by the perpendicular. But this path is disjoint from the subtree, which means that

one more edge or vertex is cut for a total of fk/21. [

V W

Figure 7-2: The construction in Lemma 7-1.

This lemma can be used to show that the minimum area of any convex region 2
containing a layout for a complete binary tree must be 12(n lgn). The length.of the 6,I

-,

3

FURTHER I.AYOUF RESULMS 115

layout along the baseline m'lit be 2(n), and as demonstraied by the previous

construction, there is a poht in the layout Q(lgn) away from the baseline. This

point and the two points on the limits of the baseline determine a triangle which has

Q(nlgn) area. Since any convex region that contains these three points must

contain the triangle, so must any convex region containing the layout have U(n lgn)

area.

Similarly, the O(n-VT) upper bound on the area for the layout of an n-vertex

planar graph is tight to within a constant factor because a square mesh requires

Q(nv'h") area. This can be shown by considering that the minimum bisection width

of an n-vertex square mesh is Vn . Thus the perpendicular to the baseline that

divides the vertices on the baseline into Ln/2J and rn12 vertices must cut

VT" edges. The rest of the proof follows that for the complete binary tree.

The lower bound results here generalize immediately to the model in which all

vertices are constrained to lie on the perimeter of a convex region. The perimeter of

the region must have length 9(n) since there are n vertices on it. The diameter of

the region (the line segment that realizes the greatest distance between two points)

must also be 12(n) since it is no less than a factor of ir times the length of the

perimeter. Applying the techniques of the previous construction and using the

diameter of the region as a baseline yields the same lower bound results as before.

In the case of the mesh, an exact bisection by a perpendicular may not be possible

because some vertices may lie on the perpendicular itself. This situation can be

avoided (see [41]) by putting a unit jog in the perpendicular so that it looks like a

lowercase aitch without a left leg. The "perpendicular" can then be adjusted

vertically to bisect the graph.

For the standard VLSI model in which vertices need not be collinear, a similar

construction shows that minimum dimension of any layout of a complete binary tree

must be U2(Igi).

. "-. -- - - -. -

•6 AREA-EFFICIENI VLSI CCMPUTAIION

7 3 Configurable Layouts.

One of the attractions of the ROM, PLA, or gate-array approaches to

integrated circuit designs is that one layout organization can be customized for a

particular application without disrupting the overall geometry of the layout. For

example, the bits of a ROM memory can be set without affecting its layout. The

choice of minterms for a PLA can change while the layout for the PLA remains

about the same. In the gate-array approach, one chip is produced with unconnected

wires running in channels between the components. The chip is configured by

adding solder dots to connect the wires, but the overall structure remains the same.

This philosophy of design can be applied to graph layouts.

I L

Figure 7-3: A layout that can configure any tree.

Figure 7-3 shows an O(nlg 2n) area layout for a chip which can implement

any binary tree of n vertices by simply adding n solder dots. The organization of

this chip is based on the collinear layouts of Section 7.2. All of the vertices are lined

up on the baseline and their connections run vertically. Parallel to the baseline are

lg2n horizontal wires. The top O(lgn) wires run all the way across the layout. The

next O(lgn) are broken halfway. The third group are broken into four, and so forth.

Placing solder dots on the intersections of the horizontal and vertical wires connects

the vertices.

To decide where to put the solder dots, we use the fact that any binary tree

-with n vertices can be bisected into L/2J and i/2 vertices by Cutting O(Ign)-

FURTHER LAYOUT RESULTS 117

edges. This exact bisectio:i result follows immediately from the one-separator

theorem for trees. Observe that the layout without its top O(;gn) wires forms two

smaller versions of itself. Thus the two sets of vertices can be recursively laid out on

either side of the halfway break. Then the two sublayouts are combined. Each edge

in the cut set is mapped to one of the top O(lgn) horizontal wires. Two solder dots

are placed on each horizontal wire to connect the two vertices incident on the

corresponding edge.

If the horizontal wires are considered to be buses, several solder dots can

connect the output of one processor to the inputs of many others. Using this

interpretation, the layout can be configured to implement any tree no matter what

its vertex degrees. A vertex-separator theorem such as that of [25] is used in this

instance to determine where the solder dots go.

The approach will work for more than just trees, of course. If the class of

graphs has an f(n)-separator theorem where f(n) = Q2(n q) for some q > 0, then a

layout whose area is O(nf(n)) can be configured to implement any graph of n

vertices in the class. If f(n) = 0(n), the design degenerates to a crosspoint switch.

Sometimes it is just as easy to break as make connections. When this

alternative is available, any tree can be configured from an O(nlgn) area layout.

The collinear layout results of the previous section lead directly to such a design.

Wires placed in the horizontal channels are broken along a horizontal line when the

vertices are partitioned by the separator theorem. For classes of graphs with an

f(n)-separator theorem where f(n) = S2(n q) for q > 0, the ability to break

connections gives at most a constant factor improveirent in area over the previous

design when this technique is used.

*

AREA-EFFICIENT VLSI CO)MPUTATION

7.4 Packaging a Complete Binary Tree

Although integrated circuit technology is advancing at a breathtaking pace, one

sector of that technology is crawling in comparison. The number of external

connections from an integrated circuit chip is severely limited. Whereas some

enthusiastic technologists project an eye-opening 108 components per chip, two

hundred pins per chip seems a large number to most. A chip that requires many

more is unlikely to be realizable for quite some time.

A complete binary tree is an attractive structure from this point of view if the

tree fits entirely on one chip and the root is the only off-chip connection. Several

researchers [3, 8, 23, 36] have proposed, however, that much larger tree systems be

built. (See also Section 3.2.) When any system is larger than a single chip, it

becomes necessary to partition it among separate chips that can be assembled at the

printed circuit level. What is the most effective way to partition a large complete

binary tree among chips?

Figure 7-4 shows the partitioning proposed in [23]. Each of the squares in the

diagram represents a chip packed as full as possible with an H-tree layout

(Figure 5-2, page 83). The rectangle above is another chip which contains the

standard O(n lgn) layout (Figure 5-1, page 82), but with leaves connected off chip.

This second chip can be used repeatedly to combine several smaller complete binary

trees into a larger. Thus with two kinds of chips, a complete binary tree of any size

4 can be built up. At the printed circuit level, the structure is a complete k-ary tree

where k + 1 is the number of off-chip data paths.

We can do better. Figure 7-5 shows how arbitrarily large complete binary

trees can be built out of a single chip that has only four off-chip connections. Each

chip contains one internal node of the tree, and the remainder of the chip is packed

*as full as possible with an H-tree layout. The internal node requires three off-chip

connections (denoted F, R, and L in the igure) fbr its father, right son, and left son.

The H-tree rcquires only one off-chip connection (denoted T) to its father.

40

FURl IER LAYOUT RESULTS 119

I III
IIII I

I"I I I

I."I

I

Figure 7-4: An inefficient partitioning of a complete binary tree into chips.

To interconnect two chips, the unconnected internal node on one of the two

chips is selected as the father of the two H-trees. (In Figure 7-5 the internal node

on the left has been chosen for this purpose.) The R pin on this chip is connected to

its own T pin, and the L pin is connected to the T pin on the other chip. Considered

as a unit, the combined two chips now have the same structure as a single chip-

three connections to an internal node and one to the root of a complete binary tree.

The pair of chips can be similarly combined with another pair to produce a

quadruple of chips, which can in turn be combined, and so forth. Figure 7-6 shows

a large complete binary tree which has been wired up in this recursive fashion.

---L F

T R

L-4°

F:igure 7-5: Only one kind ofchilp is needed to package a complete binary tree.W

120 AREA-EFFICIENT VLSI COW'U4" AT ION

II

R
T]

Figure 7-6: A large complete binary tree built up from a single kind of chip.

The one-chip method has many advantages over the two-chip method. Most

! obviously, the one-chip method uses only one kind of chip. Why manufacture two

i ,i kinds when one will do? Second, there are only four data paths that go off chip.

The only w;ay the two-chip solution can match this is if the chip with the standard

- layout has exactly one internal node on it. Third, the chip used in the one-chip

method is packed full. The other method leaves the chip with the standard layout

almost empty. Since the cost of an implementation is almost directly related to the

number of chips required [51, the same size tree can be built for less with the one-

chip solution. Finally, the layout of the printed circuit board is linear in the number

of chips using the one-chip method. The two-chip solution gives an O(iilgn) printed

circuit layout. Although the case is not particularly strong for asymptotic analysis of

printed circuit layout, the constant factors give a clear preference to the more

U* regular, linear area layout. If circumstances permnit, the wires connecting the chips

* can in fact be routed und rnath the chips thecmseles, h reby rqu~iring fl(more

- . area on the printed circuit board than the chips themlselves.

V.j __

Conclusion

Systolic Systems

Systolic structures provide a model of parallel VLSI computation that takes

into account issues such as I/0, control, and interprocessor communication. In a

systolic system pipelining and multiprocessing occur simultaneously to ensure high

throughput and fast response. The systolic approach is not the answer to every

VLSI problem, but when it does apply, good algorithms that work well in practice

are a consequence. (For a practical demonstration of this design philosophy, see

1121.)

Since communication in a systolic system is through fixed interconnections, it

is desirable in a VLSI implementation that these data paths have simple and regular

geometries. This thesis has concentrated primarily on systolic algorithms for arrays

and trees out of this concern. Part 1I showed that these are not the only graphs with

good layouts, however.

Among the contributions of Part II is a design methodology for systolic

systems. An algorithm can be designed in the more flexible design space of

semisystolic systems and transformed by the Systolic Conversion Lemma

(Lemma 2-1) into a systolic system. The most important corollary of this lemma is

the Broadcast Corollary (Corollary 2-4), which shows that for any systolic system

augmented by broadcasting, there is an equivalent systolic system with no broad-

casting. The Broadcast Corollary allows a designer to build systems that behave as if

the proccssors operate on -lloal data, htt v ithout lIuoh! comm t i icatiofn.

121

122 AREA-EFFICIENT VLSI C01 iPUTATION

The Reset Theorem (Theoren- 2-6) provides a transfoimation that maps

igorithms from the design space of ,emisystolic systems back into the design space.

This transformation is orthogonal to the Systolic Conversion Lemma in the sense

vthat if the Systolic Conversion Lemma could be applied to an algorithm before the

transformation, it can be applied after. The view from the host is that a global

action has taken place in a single pulsation, yet the work is in fact distributed across

time using local connections.

The other general result, Lemma 2-5, parallels earlier work by Cole [91 and

Smith [35] in the realm of cellular automata. We have extended this result to all

semisystolic systems. In addition, the ideas of real-time computation pioneered by

these two researchers have been extended by this thesis.

The general results of Chapter 2 gave way to many particular algorithms in

Chapter 3. Many interesting varieties of real-time priority queues were developed

including the systolic multiqueue and one which operates on variable-length keys.

The results were extended to the real-time maintenance of order statistics and a

pipelined search tree. In addition, a real-time, binary up-down counter and a real-

time pattern matcher were designed. The descriptions of these algorithms would

have been substantially more complicated without the Systolic Conversion Lemma.

Chapter 4 showed how systolic arrays can efficiently perform matrix computa-

tions. Matrix-vector multiplication, solving of triangular linear systems, convo-

lution, discrete Fourier transform, and filtering can all be computed on linearly

- connected systolic arrays. Matrix multiplication and LU-decomposition can both be

performed on hex-connected systolic arrays.

For the important problem of solving a dense system of n linear equations in

O(n) time on n2 mesh-connected processors, the LU-decomposition algorithm

improves upon the matrix inversion algorithm of Van Scoy [43]. LU-decomposition

is to be preferred to matrix inversion [101 particularly for band matrices which

typically have dense in%-rscs. Furthenmore, the hardware requirements Ibr the

"* w

CONCLUSION 123

LU-decomposition algorithm are only a function of the band's v i!:h, not its length.

Finally, the all-important ,roblem of host-device communi:,Lion has been ad-

dressed, where the band-matrix solution has the advantage of pipelining.

Systolic systems treat the costs due to interprocessor communication explicitly. .

These costs will likely be a dominant factor in the overall cost of computation in

VLSI systems as they are for other parallel systems. Systolic systems can help bridge

the gap between theory and practice because these costs are modeled explicitly.

When a systolic system is built as an actual VLSI chip, its behavior obeys the

mathematics of a computational theory.

Layouts

The layout algorithm of Part II should be viewed in an historical context Most

wire-routing programs for printed circuit boards have two phases. First, the chips

are placed on the printed circuit board. Then leaving the chips fixed, wires are

routed one by one using heuristic search-usually a variant on the path-finding

algorithm attributed to Lee [221. Most hardware designers concede that the first of

these two steps is the harder. With a good placement, routing is easy; with a bad

placement, routing is impossible.

Most routers for integrated circuits use much the same approach. Variations

include polycells [26] and gate arrays. In the polycell approach the components are

laid down in horizontal strips and the channels between the strips are used for

routing the wires. The advantage is that the channel width is not fixed. If a channel

has too much congestion, extra tracks can be added easily in a manner reminiscent

of slicing. The channels run both horizontally and vertically in gate arrays, but are a

fixed width determined in advance. Typically, all cells are identical and are

connected tip witi a final layer of metalization.

q Reccntly, Johannscn [181 has introduced bristle blocks as a technique for laying

out integraied circuits. Rath~cr than t,,ing standard wire routing Ro connect ce.lls in a

I4 AREA-EFFICIENT VLS[COMPUrA'[ION

dos ign, the cells plug together. This would seem to mean that all cells must have the

:&,me width or pitch. Instead, however, the cells are designed with places to stretch so

that a cell with smaller pitch can be adjusted to plug into a wider cell with no

routing necessary. .

The idea of using divide-and-conquer to help with the general wire-routing

problem is not new. As far back as 1969, Gunther [15] gave a heuristic procedure

for arranging machines in a workshop given the frequency of travel between

machines. This algorithm, which applies as much to circuit placement as to machine
placement, partitions the transportation graph and places the subgraphs in subrect-
angles of the original area. GUnther's technique for partitioning is highly heuristic,

and he comments that it is the critical step. Another heuristic for graph partitioning
is given by Kernighan and Lin [19]. Among the applications they mention is that of
partitioning chips among printed circuit boards so as to minimize the connections

between boards. There is an algorithmic solution to the partitioning problem,

however. It is based on the fact that the graphs of interconnections that arise in

practice are almost planar. By replacing each crossover in some drawing of the

graph with an artificial vertex that performs the crossover, Lipton and Tarjan's

separator algorithm for planar graphs can be applied.

It is unlikely that a fast general partitioning algorithm will be found because
the problemn of fnding the minimum bisection width of a graph is NP-complete

[13]. In other words, graphs are hard to partition. This unfortunate situation brings

up the question, "Can the divide-and-conquer approach used in this paper, which

performs placement and routing simultaneously, compete with or enhance those

techniques already in use?"

A difficulty with applying the techniques of this paper concerns constant

factors in the areas of layouts. The model in Section 5.2 assumes that each vertex

fits into a square of the grid, and furthermore, that the sizes of ve, tices and edges are

comparable. Fur many practical applications, the vertices are somewhat larger than

* 1
LWI
k

°
' .

-I

CONCLUSION 125

the edgcs. This means that the grid size is substantially larger than the edge width,

and thus each slice through the layout wastes a large constant 'actor. A solution to

this problem is to design the cells represented by vertices with places where they can

be sliced, and then use the largest unsliceable portion of a cell as the granularity of

the grid. This technique complements the bristle blocks approach because places

where a cell can stretch are frequently places where it can be sliced. 2
There is another solution, however, which does not require the cells to be

sliceable, and yet does allow the granularity of the grid to be the width of a wire.

The limitation is that sizes and shapes of vertices must not vary widely. Each vertex

is placed in a rectangle whose area is four times the area of the vertex. The layout

algorithm is allowed to slice this rectangle, but slicing is allowed only in one

direction. In the other direction the space between or next to the layouts is used as a
channel for routing. When a slice is made through a vertex, the vertex is not sliced,

but instead the edge simply crosses over on another layer. When the algorithm

terminates, each edge that crosses over a vertex is routed around the vertex in the

unused area provided by the rectangle.

Where vertices are large, unsliceable, and of widely varying sizes, the problem

becomes one of two-dimensional bin-packing with constraints. This formulation

seems the least tractable. It may be, however, that as with bin-packing, simple

heuristics can be found that give reasonable solutions for commonly occuring

instances.

In summary, this thesis has shown that a good separator theorem for a class of

gra.phs is a siifficient condition for there to be a good VLSI layout of any graph in

the class. "Ibis led to linear area layouts for trees which have a one-separator

theorem and O(n lg2 n) area layouts for planar graphs which have a /'T-separator

theorem. A general algorithm was prescnted that 1,ys out these particular graphs in

O(n lgn) time. Most of the conlputation goes to exucuting the separator algorithni

for the graphs-the time devoted to maitagemcni or the la.otit representation is

!l :rly lilicar.

126 AREA-EFFICIENT VLSI CC MPUTATION

The divide-and-conquer techni-Wes apply to other models inchding that in

which all vertices are constrained t : be collinear. The layout results of this model

were applied to a study of configurable layouts. It was shown, for example, that

0(n lg2 n) area is sufficient to implement a reconfigurable layout that can imple-

ment any tree by only adding n solder-dot connections. If n connections can be

broken as well, there is an O(n ig n) area layout.

Among the peripheral results of Part II was the fact that any VLSI layout, no

matter how long and skinny, can be reembedded in a square whose area is at most

three times the area of the original layout. Also, a design was proposed for the

partitioning of a complete binary tree into identical chips.

~1

Fe. l

*1i

-'1

Acknowledgments

Few theses are written in a vacuum, and I am pleased to have written mine in

the warm environment of the Carnegie-Mellon University Computer Science

Department. The cohesiveness of that community allowed the cross-fertilization of

ideas from different disciplines within computer science and provided me with the

exciting opportunity to explore integrated circuits from a theoretical perspective.

No student could have had more attention and encouragement from two

premier computer scientists than I had from my advisors Jon L. Bentley and H. T.

Kang. From Jon I learned about algorithm design and the importance of seeking

simple formulations of ideas. Kung taught me the central issues of parallel

computation and offered me wise and enlightened advice about my academic :1

career.

I spent many hours with Jim Saxe sorting through the details of my thesis. Jim

taught me about recurrences (the hard kind) and provided me with constant

feelback about my ideas.

Bob Sproull and Leo Guibas were good enough to serve on my thesis

ccmmittee. Both provided me with excellent commcnts concerning the organization

and substance of my thesis.

I profited from many discussions with Mike Foster, Peter Schwarz, 'rnd Clark

Thompson. Rick Gumpertz deserves special thanks tbr finding and removing ,he

bugs I identilied in Scribe while producing the thesis. I would ,1,'o like to thnk

David Rced and Andrew Pahiy for the dover hacking that allot W me to print ny

th.2. is at \,lT.

127

AREA -EFFICIENT VLSI CoMPUrATION

I am especially grateful to the Fannie and John Hertz Foundation which

p,ovided me with a fellowship during my graduate education.

My wife and lover Linda Lue deserves more than thanks. She kept me sane

during the most difficult moments of thesis writing, and she devoted her energy to

our marriage and family so that I could pursue my degree. My love for computer

science shrivels in comparison with my love for her. This thesis is as much hers as it

is mine.

is..-

|*

!w

. ... 'i 11 " '11 | " mm I .. .I ~ ", " m : "

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and
Analysis of Computer Algoriihtns, Addison-Wesley, Reading, Massachusetts,
1974.

2. Michael 0. Albertson and Joan P. Hutchinson, "On the independence ratio of
a graph," Journal of Graph Theory, Vol. 2, 1978, pp. 1-8.

3. Jon Louis Bentley and H. T. Kung, "A tree machine for searching problems,"
Proceedings of the 1979 International Conference on Parallel Processing, IEEE,
1979, pp. 257-266.

4. Jon Louis Bentley, Dorthea Haken, and James B. Saxe, "A general method for
solving divide-and-conquer recurrences," Technical repurtCMU-CS-78-154,
Department of Computer Science, Carnegie-Mellon University, December
1978.

5. Thomas R. Blakeslee, Digital Design with Standard MSI and LSI, John Wiley
& Sons, New York, 1975.

6. R. P. Brent and H. T. Kung, "Fast algorithms for manipulating foi mal power
series," Journal of the Association for Computing Machinery, Vol. 25, October
1978, pp. 581-595.

7. R. P. Brent and H. T. Kung, "On the area of binary tree layouts," Technical
report TR-CS-79-07, The Australian National University, Department of
Computer Science, July 1979.

8. Sally A. Browning, The Tree Machine: A Highly Concurrent Computing
Environment, Ph.D. dissertation, Computer Science Department, California
Institute of Technology, January 1980.

9. Stephen N. Cole, "Real-time computation by n-dimensional iterative arrays of
finite-state machines," IEEE Transactions on Computers, Vol. C-18, April
1969, pp. 349-365.

10. G. Dahltiuist. A. Bjrck, and N. Anderson, Numncrical Methods, Prentice-Hall,
Fiiglev.ood ClIfs, New Jersey, 1969.

129

1 A A-EFFICI ENT \.XI CMI'LITA'rION

11. Robert W. Floyd and Jeffrey D. Ulhnan, "The compilatior of regular
expressions into integrated circuits," 21st Annual Sytnpo7ium o,. foundations
of Computer Science, IEEE Computer Society, October 1980.

12. Michael J. Foster and H. T. Kung, "The design of special-purpose VLSI -2
chips," Computer Aagazine, Vol. 13, No. 13, January 1980, pp. 26-40, An

early verion of this paper entitled "Design of special-purpose VLSI chips:
examples and opinions" appears in Proceedings of the 7ih International
Symposium on Computer Architecture, La Baule, France, May 1980.

13. M. R. Garey, D. S. Johnson, and L. Stockmeyer, "Some simplified polynomial
cotnplete problems," 6th Annual Symposium on Theory of Conputing, ACM,
April 1974, pp. 47-63.

14. Leonidas J. Guibas, Private communication, March 1980.

15. Th. Ginther, "Die riumliche anordnung von einheiten mit
wechselbeziehungen," Elektronische Datenverarbeitung, May 1969,
pp. 209-212.

16. Frederick C. Hennie III, Iterative Arrays of Logical Circuits, M. I. T. Press and
John Wiley Sons, Inc., M. 1. T. Press Research Monographs, 1961.

17. Dan Hoey and Charles E. Leiserson, "A layout for the sh U ffle-exchange
network," 1980 International Conference on Parallel Processing, August 1980,
pp. 329-336.

18. Dave Johannsen, "Bristle blocks: a silicon compiler," Proceedings of the
Celtch Conference on Very Large Scale Integration, Pasadena, California,
January 1979, pp. 303-310.

19. B. W. Kernighan and S. Lin, "An effective heuristic procedure For partitioning
graphs," Bell Systems Technical Journal, Vol. 49, February 1970, pp. 291-308.

20. FH. T. Kun-, "Let's design algorithms for VLSI systems," Proceedings of the
Caltech Conference on Very Large Scale Integration, Charles L. Seitz, ed.,
Pasadena, California, January 1979, pp. 65-90.

21. H. T. KUng and Charles E. Leiserson, "Systolic arrays (for VLSI)," Sparse

M4hatrix 'roceedings 1978, 1. S. Duff and G. W. Stewart, ed., Society for
Indstrial and Applied Mathematics, 1979, pp. 256-282, An early version
appears in Section 8.3 of [281.

22. C. Y. Lee, "An algorithm for path connection and its applications," IRE
Transactions on Electronic Computers, Vol. EC-- No. 3, September 1961,
pp. 346-365.

1311"."REFFRENCES 1.31

23. Charles E. Leiscrson, "Systolic priority queues," Proceedings of the Caltech
Conbference on Jery Large Scale Integration, Charles L. Seitz, ed., California
Institute of Technology, Pasadena, California, January 1979, pp. 199-214.

24. P. M. Lewis, R. E. Stearns, and J. Hartmanis, "Memory bounds for recog-
nition of context-free and context-sensitive languages," IEEE Symposium on
Switching Circuit Theory and Logical Design, IEEE, 1965.

25. Richard J. Lipton and Robert E. Tarjan, "A separator theorem for planar
graphs," A Conference on Theoretical Computer Science, University of Water-
leo, August 1977.

26. Roland L. Mattison, "A high quality, low cost router for MOS/LSI,"
Proceedings of the ACM-IEEE Design Automation Workshop, Dallas, Texas,
June 1972, pp. 94-103.

27. R. McNaughton and H. Yamada, "Regular expressions and state graphs for
automata," IEEE Transactions on Computers, Vol. 9, No. 1, March 1960,
pp. 39-47.

28. Carver A. Mead and Lynn A. Conway, Introduction to VLSI Systems,
Addison-Wesley, Reading, Massachusetts, 1980.

29. Carver Mead and Martin Rem, "Cost and performance of VLSI computing
structures," IEEE Journai of Solid State Circuits, Vol. SC-14, No. 2, April
1979, pp. 455-462.

30. George H. Mealy, "A method for synthesizing sequential circuits," Bell
System. Techn'cal.Journal, Vol. 34, No. 5, September 1955, pp. 1045-1079.

31. Edward F. Moore, "Gedanken-experiments on sequential machines," In
Automata Studies, Princeton University Press, Princeton, New Jersey, Annals
of Mathematics StudiesNo. 34, 1956, pp. 129-153.

32. Yu. Orfiran. "On the algorithmic complexity of discrete functiois," English
translation in Soviet Physics--Doklad)y Vol. 7, No. 7, 1963, pp. 589-591.

33. Franco P. Preparata and Jean Vuillemiin, "The cube-connecded-cycles: a
versatile network for parallel computation," Technical report 356, Institut de
Recherche d'lnfoimatique et d'Autoinatique, Jitne 1979.

34. C. H. Sequin. A. N4. Depain, and D. A. Patterson, "Coniunication in X-tree,
a modular multiprocCssor system," ACM 78 Proceedings, ACM, 1978.

35. Alvy Ray Smith II, "Cellular automata theory," Technical
report SEL-,0--01O. Stanford Elecfrtonics Laboratory, December 1969.

36. S. W. Song. "A highly concurrent tree machine for &,t,.tise applications,"
1980 r1('rfnliolal Coif'rece on "arallel Process,:ng. Auguti 1%0,
pp. 259-2:8.

13 2 AREA-EF-ICIENT VLSI COMPUTATION

71. Harold S. Stone, "Parallel processing with the perfect shuffle," IEEE Transac-
tions on Computers Vol. C-2(., No. 2, February 1971, pp. 153-161.

38. I. E. Sutherland and C. A. Mead, "Microelectronics and computer science,"
Scientific American, Vol. 237, No. 3, September 1977, pp. 210-228.

39. Ivan E. Sutherland and Donald Oestreicher, "How big should a printed circuit
board be?" IEEE Transactions on Computers, Vol. C-22, May 1973,
pp. 537-542.

40. Robert Endre Tarjan, "Efficiency of a good but not linear set union
algorithm," Journal of the Association for Computing Machinery, Vol. 25, No.
2, 1975, pp. 215-225.

41. Clark D. lhompson, A Complexity Theory for VLSI, Ph.D. dissertation,
Department of Computer Science, Carnegie-Mellon University, 1980.

42. L. G. Valiant, "Universality considerations in VLSI circuits," December 1979,
draft (to appear in IEEE Transactions on Computers).

43. Frances Lucretia Van Scoy, Parallel Algorithms in Cellular Spaces, Ph.D.
dissertation, School of Engineering and Applied Sciences, University of
Virginia, May 1976.

'"I

- " CURITY CLASSIICATION 017'"rwIS Ph I ,tin Do!@ Enf.,ed)

REPORT DOCUMENTATION PAGE I READ INSTRUCTIONS
I BEFORE CO'.PLE-TING FORM

" REPORT NUM1ER 2. GOVT ACCESSION NO.] 3. RECtIPtENT'S CATAi.OG NUMBER

CMU-CS-82-108 - 2
4. TITLE (and Subtile) S. TYPE OF REPORT & PERIOD COVERED

Interim
AREA-EFFICIENT VLSI COMPUTATION _

6. P&RFORMING ORG. REPORT NUMIER

7. AUTNOR(a) 6. CONTRACT OR GRANT NUMBER(@)

F33615-78-C-1551 ARPA
CHARLES ERIC LEISERSON MCS 78-236-76 NSF

N00014-76-C-0370 ONR
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL.E44ENT PROJECT. TASKCarnegie-Mellon University AREA & WORK UNIT NUMBERS

Computer Science Department
Pittsburgh, PA. 15213

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

13. NUMIER OF PAGES

14 MONITORING AGENCY NAME 6 ADORESS(If dif.eren irom Caatrolling Oflfce) IS. SECURITY CLASS. (of this report)

* UNCLASSIFIED
a. OECLASSIFICATION/DOWNGRADING

SCHEDUL.E

I6. OISTRIBUTION STATEMENT (o this Repoit)

.V

, 17. DISTRIBUTION STATEMENT (at the abowtac entered In Bloak 20. it differnt lfr Report)

Approved for public release; distribution unlimited

IL SUPPLEMENTARY NOTES

IS. KEY WOROS (Conlinue an reverse mode I necessary and idendlY by black nmber)

fGt ABSTRACT (Centinue, Pwers aa ddo It noceesmay anid Identify by 6909k numbot)

SD , AN 1473 OITION OF I NOV Is IS OUSO,.E UNCLASSIFIED
*I@.~G1- 401 ICURITY CLASSIFICATION Of TNIS PAGE (*hem Des e aed4 4P

